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A function F : R → R is singular if it is non-constant and F ′(x) = 0 for Lebesgue
almost all x ∈R (sometimes further conditions are imposed). We construct rich classes
of singular cumulative distribution functions (CDF) F for random variables X on the
unit interval [0,1]. Our basic idea is to construct such functions by considering a q -adic
expansion of X , where q ∈N, and where the coefficients in the expansion form a time
series as follows. Let X1,X2, . . . be a time series with values in {0,1, . . . , q−1}. Then define
X :=
∑∞

n=1 Xn q−n.
In particular, we completely characterize the CDF when {Xn}∞1 is stationary; or

equivalently when the point process
∑∞

1 δXn
(·) is stationary (here, δt is the Dirac mea-

sure at t ). In fact F becomes a mixture of three CDFs F1, F2, F3 on [0,1], where F1 is the
uniform CDF on [0,1]; F2 is singular discrete and is a mixture of countable many CDFs,
each of them being uniform on a finite set of so-called purely repeating q -adic numbers
which are members of a cycle (we clarify how this corresponds to a stationary cyclic
Markov chain of order equal to the length of the cycle); and F3 is singular continuous.

Two simple models are well-known: Take {Xn}n≥1 to be independent identically
distributed. In the dyadic case q = 2, if 0 and 1 equally likely, then dF is just Lebesgue
measure on [0,1]. In the triadic case q = 3, if 0 and 2 are equally likely and P(X1 = 1) = 0,
then F is the well known Cantor function.

These models and several others are discussed more fully in the talk. Moreover,
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we demonstrate in several examples that continuity of F is a natural property when
considering specific models for stationary time series and point processes.
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