Statistical models and methods for spatial point processes

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

May 28, 2013

1 / 156

Mucous membrane cells

- 1. Intro to point processes and moment measures
- 2. The Poisson process
- Cox and cluster processes
- 4. The conditional intensity and Markov point processes
- 5. Estimating equations
- 6 Likelihood-based inference and MCMC

Lectures:

- 1. Intro to point processes and moment measures
- 2. The Poisson process
- 3. Cox and cluster processes
- 4. The conditional intensity and Markov point processes
- 5. Estimating equations
- 6. Likelihood-based inference and MCMC

Aim: overview of

- spatial point process theory
- ► statistics for spatial point processes with emphasis on estimating equation inference
- ► not comprehensive: the most fundamental topics and my favorite things.
- ▶ all methods in Section 1-5 implemented in R package spatstat

Centres of cells in mucous membrane:

Repulsion due to physical extent of cells

2 / 156

Inhomogeneity - lower intensity in upper part

Bivariate - two types of cells

Same type of inhomogeneity for two types ?

3/156 4/156

Data example: Capparis Frondosa

Elevation

- ▶ observation window W = 1000 m × 500 m
- ► seed dispersal ⇒ *clustering*
- ▶ environment ⇒ inhomogeneity

Potassium content in soil.

Objective: quantify dependence on environmental variables and clustering

Whale positions

Close up:

Aim: estimate whale intensity λ

Observation window W = narrow strips around transect lines

Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering

6 / 156

Somalian pirates - two-type space-time

Cotton plantations in the Deep South

What is a spatial point process?

Definitions:

- 1. a locally finite random subset **X** of \mathbb{R}^2 (#(**X** \cap A) finite for all bounded subsets $A \subset \mathbb{R}^2$)
- 2. stochastic process of count variables $\{N(B)\}_{B \in \mathcal{B}_0}$ indexed by bounded Borel sets \mathcal{B}_0 .
- 3. a random counting measure N on \mathbb{R}^2

Equivalent provided no multiple points: $(N(A) = \#(\mathbf{X} \cap A))$

This course: appeal to 1. and skip measure-theoretic details.

In practice distribution specified by an explicit construction (this and second lecture) or in terms of a probability density (third lecture).

Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance of counts $N(A) = \#(\mathbf{X} \cap A)$.

Intensity measure μ :

9 / 156

$$\mu(A) = \mathbb{E}N(A), \quad A \subseteq \mathbb{R}^2$$

In practice often given in terms of intensity function

$$\mu(A) = \int_A \rho(u) \mathrm{d}u$$

Infinitesimal interpretation: N(A) binary variable (presence or absence of point in A) when A very small. Hence

$$\rho(u)dA \approx \mathbb{E}N(A) \approx P(\mathbf{X} \text{ has a point in A})$$

10 / 156

Second-order moments

Second order factorial moment measure:

$$\alpha^{(2)}(A \times B) = E \sum_{u,v \in \mathbf{X}}^{\neq} \mathbf{1}[u \in A, v \in B] \qquad A, B \subseteq \mathbb{R}^2$$
$$= \int_A \int_B \rho^{(2)}(u,v) \, \mathrm{d}u \, \mathrm{d}v$$

where $\rho^{(2)}(u, v)$ is the second order product density

Infinitesimal interpretation of $\rho^{(2)}$ ($u \in A$, $v \in B$):

$$\rho^{(2)}(u,v)dAdB \approx P(\mathbf{X} \text{ has a point in each of } A \text{ and } B)$$

Second moment vs. second factorial moment measure

Second moment measure

$$\mu^{(2)}(A \times B) = \mathbb{E}N(A)N(B) = \alpha^{(2)}(A \times B) + \sum_{u \in \mathbf{X}} 1[u \in A \cap B]$$

Hence due to "diagonal terms" in sum not absolutely continous.

Campbell formulae

By definition of intensity function and product density and the standard proof we obtain the useful Campbell formulae: Campbell formula (by standard proof)

$$\mathbb{E}\sum_{u\in\mathbf{X}}h(u)=\int h(u)\rho(u)\mathrm{d}u$$

$$\mathbb{E}\sum_{u,v\in\mathbf{X}}^{\neq}h(u,v)=\iint h(u,v)\rho^{(2)}(u,v)\mathrm{d}u\mathrm{d}v$$

Pair correlation function

$$g(u,v) = \frac{\rho^{(2)}(u,v)}{\rho(u)\rho(v)} = \frac{P(\mathbf{X} \text{ has a point in each of } A \text{ and } B)}{P(\mathbf{X} \text{ has a point in A})P(\mathbf{X} \text{ has a point in B})}$$

= 1 if independence (Poisson process, next section)

13 / 156

Covariance and pair correlation function

$$\mathbb{C}\text{ov}[N(A), N(B)] = \int_{A \cap B} \rho(u) du + \int_{A} \int_{B} \rho(u) \rho(v) (g(u, v) - 1) du dv$$

$$= \text{Poisson variance} + \text{extra variance due}$$
to interaction

K-function

$$K(t) = \int_{\|h\| \le t} g(h) \mathrm{d}h$$

(provided g(u, v) = g(u - v) i.e. **X** second-order reweighted stationary)

Examples of pair correlation and *K*-functions:

Unbiased estimate of K-function (W observation window):

$$\hat{K}(t) = \sum_{u,v \in \mathbf{X} \cap W} \frac{1[0 < \|u - v\| \le t]}{\rho(u)\rho(v)} e_{u,v}$$

 $(e_{u,v} \text{ edge correction factor})$

Exercises

1. Show that the covariance between counts N(A) and N(B) is given by

$$\mathbb{C}\mathrm{ov}[N(A), N(B)] = \mu(A \cap B) + \alpha^{(2)}(A \times B) + -\mu(A)\mu(B)$$

- 2. Check covariance formula on slide 15.
- 3. Show that

$$K(t) := \int_{\mathbb{R}^2} \mathbb{1}[\|u\| \le t] g(u) du = \frac{1}{|B|} \mathbb{E} \sum_{\substack{u \in \mathbf{X} \cap B \\ v \in \mathbf{X}}}^{\neq} \frac{\mathbb{1}[\|u - v\| \le t]}{\rho(u)\rho(v)}$$

(Hint: use the Campbell formula)

4. Show that the following estimate is unbiased:

$$\hat{K}(t) = \sum_{u,v \in \mathbf{X} \cap W}^{\neq} \frac{1[\|u - v\| \le t]}{\rho(u)\rho(v)|W \cap W_{u-v}|}$$

where W_{u-v} translated version of W.

17 / 156

- 1. Intro to point processes and moment measures
- 2. The Poisson process
- 3. Cox and cluster processes
- . The conditional intensity and Markov point processes
- 5. Estimating equations
- 6. Likelihood-based inference and MCMC

18 / 156

The Poisson process

Assume μ locally finite measure on \mathbb{R}^2 with density ρ .

X is a Poisson process with intensity measure μ if for any bounded region B with $\mu(B) > 0$:

- 1. $N(B) \sim \mathsf{Poisson}(\mu(B))$
- 2. Given N(B), points in $X \cap B$ i.i.d. with density $\propto \rho(u)$, $u \in B$

$$B = [0,1] \times [0,0.7]$$
:

Homogeneous: $\rho = 150/0.7$ Inhomogeneous: $\rho(x, y) \propto e^{-10.6y}$

Existence of Poisson process on \mathbb{R}^2 : use definition on disjoint partitioning $\mathbb{R}^2 = \bigcup_{i=1}^{\infty} B_i$ of bounded sets B_i .

Independent scattering:

- $A, B \subseteq \mathbb{R}^2$ disjoint $\Rightarrow \mathbf{X} \cap A$ and $\mathbf{X} \cap B$ independent
- $\rho^{(2)}(u,v) = \rho(u)\rho(v)$ and g(u,v) = 1
- $\mathbb{C}\mathrm{ov}[N(A),N(B)] = \int_{A \cup B} \rho(u) \mathrm{d}u$

Characterization in terms of void probabilities

The distribution of **X** is uniquely determined by the void probabilities $P(\mathbf{X} \cap B = \emptyset)$, for bounded subsets $B \subseteq \mathbb{R}^2$.

Intuition: consider very fine subdivision of observation window – then at most one point in each cell and probabilities of absence/presence determined by void probabilities.

Hence, a point process $\mathbf X$ with intensity measure μ is a Poisson process if and only if

$$P(\mathbf{X} \cap B = \emptyset) = \exp(-\mu(B))$$

for any bounded subset B.

21 / 156

Homogeneous Poisson process as limit of Bernouilli trials

Consider disjoint subdivision $W = \bigcup_{i=1}^n C_i$ where $|C_i| = |W|/n$. With probability $\rho|C_i|$ a uniform point is placed in C_i .

22 / 156

Number of points in subset A is $b(n|A|/|W|, \rho|W|/n)$ which converges to a Poisson distribution with mean $\rho|A|$.

Hence, Poisson process default model when points occur independently of each other.

Distribution and moments of Poisson process

X a Poisson process on S with $\mu(S) = \int_S \rho(u) \mathrm{d}u < \infty$ and F set of finite point configurations in S.

By definition of a Poisson process

$$P(\mathbf{X} \in F)$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(S)}}{n!} \int_{S^n} 1[\{x_1, x_2, \dots, x_n\} \in F] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

$$(1)$$

Similarly,

$$\mathbb{E}h(\mathbf{X})$$

$$=\sum_{n=0}^{\infty}\frac{\mathrm{e}^{-\mu(S)}}{n!}\int_{S^n}h(\{x_1,x_2,\ldots,x_n\})\prod_{i=1}^n\rho(x_i)\mathrm{d}x_1\ldots\mathrm{d}x_n$$

Proof of independent scattering (finite case)

Consider bounded $A, B \subseteq \mathbb{R}^2$.

 $X \cap (A \cup B)$ Poisson process. Hence

$$P(\mathbf{X} \cap A \in F, \mathbf{X} \cap B \in G) \quad (\mathbf{x} = \{x_1, \dots, x_n\})$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} \int_{(A \cup B)^n} 1[\mathbf{x} \cap A \in F, \mathbf{x} \cap B \in G] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} \sum_{m=0}^n \frac{n!}{m!(n-m)!} \int_{A^m} 1[\{x_1, x_2, \dots, x_m\} \in F]$$

$$\int_{B^{n-m}} 1[\{x_{m+1}, \dots, x_n\} \in G] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

= (interchange order of summation and sum over m and k = n - m) $P(\mathbf{X} \cap A \in F)P(\mathbf{X} \cap B \in G)$

Superpositioning and thinning

If $\mathbf{X}_1, \mathbf{X}_2, \ldots$ are independent Poisson processes (ρ_i) , then superposition $\mathbf{X} = \bigcup_{i=1}^{\infty} \mathbf{X}_i$ is a Poisson process with intensity function $\rho = \sum_{i=1}^{\infty} \rho_i(u)$ (provided ρ integrable on bounded sets).

Conversely: Independent π -thinning of Poisson process \mathbf{X} : independent retain each point u in \mathbf{X} with probability $\pi(u)$. Thinned process \mathbf{X}_{thin} and $\mathbf{X} \setminus \mathbf{X}_{\text{thin}}$ are independent Poisson processes with intensity functions $\pi(u)\rho(u)$ and $(1-\pi(u))\rho(u)$.

(Superpositioning and thinning results most easily verified using void probability characterization of Poisson process, see M & W, 2003)

For general point process **X**: thinned process \mathbf{X}_{thin} has product density $\pi(u)\pi(v)\rho^{(2)}(u,v)$ - hence g and K invariant under independent thinning.

25 / 156

In particular (if S bounded): X_1 has density

$$f(\mathbf{x}) = e^{\int_{S}(1-\rho_1(u))du} \prod_{i=1}^{n} \rho_1(x_i)$$

with respect to unit rate Poisson process ($\rho_2 = 1$).

Density (likelihood) of a finite Poisson process

 \mathbf{X}_1 and \mathbf{X}_2 Poisson processes on S with intensity functions ρ_1 and ρ_2 where $\int_S \rho_2(u) \mathrm{d} u < \infty$ and $\rho_2(u) = 0 \Rightarrow \rho_1(u) = 0$. Define 0/0 := 0. Then

$$P(\mathbf{X}_{1} \in F)$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu_{1}(S)}}{n!} \int_{S^{n}} 1[\mathbf{x} \in F] \prod_{i=1}^{n} \rho_{1}(x_{i}) dx_{1} \dots dx_{n} \quad (\mathbf{x} = \{x_{1}, \dots, x_{n}\})$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu_{2}(S)}}{n!} \int_{S^{n}} 1[\mathbf{x} \in F] e^{\mu_{2}(S) - \mu_{1}(S)} \prod_{i=1}^{n} \frac{\rho_{1}(x_{i})}{\rho_{2}(x_{i})} \prod_{i=1}^{n} \rho_{2}(x_{i}) dx_{1} \dots dx_{n}$$

$$= \mathbb{E}(1[\mathbf{X}_{2} \in F] f(\mathbf{X}_{2}))$$

where

$$f(\mathbf{x}) = e^{\mu_2(S) - \mu_1(S)} \prod_{i=1}^n \frac{\rho_1(x_i)}{\rho_2(x_i)}$$

Hence f is a density of X_1 with respect to distribution of X_2 .

26 / 156

Back to the rain forest

- ► observation window W = 1000 m × 500 m
- ▶ seed dispersal ⇒ clustering
- ▶ environment ⇒ inhomogeneity

Elevation

Potassium content in soil.

Objective: quantify dependence on environmental variables and clustering

Inhomogeneous Poisson process

Log linear intensity function

$$\rho(u; \beta) = \exp(z(u)\beta^{\mathsf{T}}), \quad z(u) = (1, z_{\mathsf{elev}}(u), z_{\mathsf{potassium}}(u), \ldots)$$

Estimate β from Poisson log likelihood (spatstat)

$$\sum_{u \in \mathbf{X} \cap W} z(u)\beta^{\mathsf{T}} - \int_{W} \exp(z(u)\beta^{\mathsf{T}}) \mathrm{d}u \quad (W = \text{ observation window})$$

Model check using edge-corrected estimate of K-function

$$\hat{\mathcal{K}}(t) = \sum_{u,v \in \mathbf{X} \cap W}^{\neq} \frac{\mathbb{1}[\|u-v\| \leq t]}{
ho(u;\hat{eta})
ho(v;\hat{eta})|W \cap W_{u-v}|}$$

 W_{u-v} translated version of W.

29 / 156

Capparis Frondosa and Poisson process?

Fit model with covariates elevation, potassium,...

Fitted intensity function

$$\rho(u; \hat{\beta}) = \exp(\hat{\beta}z(u)^{\mathsf{T}})$$

Estimated K-function and $K(t) = \pi t^2$ -function for Poisson process:

Not Poisson process - aggregation due to unobserved factors (e.g. seed dispersal)

30 / 156

Exercises

- 1. What is K(t) for a Poisson process ?
- 2. Check that the Poisson expansion (1) indeed follows from the definition of a Poisson process.
- 3. Compute the second order product density for a Poisson process **X**.
 - (Hint: compute second order factorial measure using the Poisson expansion for $\mathbf{X} \cap (A \cup B)$ for bounded $A, B \subseteq \mathbb{R}^2$.)
- 4. (if time) Assume that **X** has second order product density $\rho^{(2)}$ and show that g (and hence K) is invariant under independent thinning (note that a heuristic argument follows easy from the infinitesimal interpretation of $\rho^{(2)}$).

(Hint: introduce random field $\mathbf{R} = \{R(u) : u \in \mathbb{R}^2\}$, of independent uniform random variables on [0,1], and independent of \mathbf{X} , and compute second order factorial measure for thinned process $\mathbf{X}_{\text{thin}} = \{u \in \mathbf{X} | R(u) \leq p(u)\}$.)

- 1. Intro to point processes and moment measures
- 2. The Poisson process
- 3. Cox and cluster processes
- 4. The conditional intensity and Markov point processes
- 5. Estimating equations
- 6. Likelihood-based inference and MCM

Cluster process: Inhomogeneous Thomas process

Parents stationary Poisson point process intensity $\boldsymbol{\kappa}$

Poisson(α) number of offspring distributed around parents according to bivariate Gaussian density

Inhomogeneity: offspring survive according to probability

$$p(u) \propto \exp(Z(u)\beta^{\mathsf{T}})$$

depending on covariates (independent thinning).

33 / 156

Wide range of covariance models available for Y: exponential, Gaussian, Matérn,...(Tilmann's course)

Cox processes "bridge" between point processes and geostatistics.

Cox processes

X is a *Cox process* driven by the random intensity function Λ if, conditional on $\Lambda = \lambda$, **X** is a Poisson process with intensity function λ .

Example: log Gaussian Cox process ("point process GLMM")

$$\log \Lambda(u) = \beta Z(u)^{\mathsf{T}} + Y(u)$$

where $\{Y(u)\}$ Gaussian random field.

34 / 156

Shot-noise Cox process

$$\Lambda(u) = \sum_{v \in \mathbf{C}} \gamma_v k(u - v)$$

where

- **C** homogeneous Poisson with intensity κ
- \blacktriangleright $k(\cdot)$ probability density.
- $ightharpoonup \gamma_{
 m v}$ iid positive random variables independent of ${f C}$

NB: equivalent to cluster process with parents ${\bf C}$, random cluster size γ_{ν} and dispersal density k.

Inhomogeneous shot-noise:

$$\Lambda(u) = \exp[\beta Z(u)^{\mathsf{T}}] \sum_{v \in \mathbf{C}} \gamma_v k(u - v)$$

Inhomogeneous Thomas: inhomogeneous shot-noise with Gaussian $k(\cdot)$ and $\gamma_{\rm v}=\alpha>0$.

Moments for Cox processes

Intensity function

$$\rho(u) = \mathbb{E}\Lambda(u)$$

Second-order product density

$$\rho^{(2)}(u, v) = \mathbb{E}\Lambda(u)\Lambda(v) = \mathbb{C}\mathrm{ov}[\Lambda(u), \Lambda(v)] + \rho(u)\rho(v)$$

$$\mathbb{C}\text{ov}[N(A), N(B)] = \int_{A \cap B} \mathbb{E}\Lambda(u) du + \int_{A} \int_{B} \mathbb{C}\text{ov}[\Lambda(u), \Lambda(v)] du dv$$
$$= \int_{A \cap B} \rho(u) du + \int_{A} \int_{B} \rho(u) \rho(v) [g(u, v) - 1] du dv$$
$$= \text{Poisson variance} + \text{extra variance due to } \Lambda$$

(overdispersion relative to a Poisson process)

37 / 156

Log-linear model

Both log Gaussian and shot-noise Cox process of the form

$$\Lambda(u) = \Lambda_0(u) \exp[\beta Z(u)^{\mathsf{T}}]$$

where Λ_0 stationary non-negative reference process.

(interpretation: Cox process **X** independent inhomogeneous thinning of stationary X_0 with random intensity function Λ_0).

Log-linear intensity (assume $\mathbb{E}\Lambda_0(u) = 1$)

$$\rho(u) = \mathbb{E}\Lambda(u) = \exp[\beta Z(u)^{\mathsf{T}}]$$

Pair correlation function ($\mathbb{E}\Lambda_0(u) = 1$):

$$g(h) = 1 + c_0(h)$$
 $c_0(h) = \mathbb{C}\text{ov}[\Lambda_0(u), \Lambda_0(u+h)]$

38 / 156

Specific models for $c_0(u-v) = \mathbb{C}\text{ov}[\Lambda_0(u), \Lambda_0(v)]$

Log-Gaussian:

$$\Lambda_0(u) = \exp[Y(u)]$$

where Y Gaussian field.

Covariance (Laplace transform):

$$c_0(h) = \exp[\mathbb{C}\mathrm{ov}(Y(u), Y(u+h))] - 1$$

Shot-noise:

$$\Lambda_0(u) = \sum_{v \in C} \gamma_v k(u - v)$$

Covariance (convolution):

$$c_0(u-v) = \kappa \alpha^2 \int_{\mathbb{R}^2} k(u)k(u+h)du$$

$$(\alpha = \mathbb{E}\gamma_{v})$$

normal-variance mixture Cox/cluster processes

Suppose kernel $k(\cdot)$ given by variance-gamma density.

Y variance-gamma if $Y = \sqrt{W}U$ where $W \sim \Gamma$ and $U \sim N_p(0, I)$ \Rightarrow closed under convolution.

Then Matérn covariance function:

$$c_0(h) = \sigma_0^2 \frac{(\|h\|/\eta)^{\nu} K_{\nu}(\|h\|/\eta)}{2^{\nu-1} \Gamma(\nu)}$$

Suppose $k(\cdot)$ Cauchy density

$$k(u) = \frac{1}{2\pi\omega^2} [1 + (\|u\|/\omega)^2)]^{-3/2}$$

(normal with inverse-gamma variance) then

$$c_0(r) = \sigma_0^2 [1 + (\|r\|/\eta)^2]^{-3/2}$$

Cauchy too
$$(\sigma_0^2 = \kappa \xi^2/(2\pi \eta)^2 \eta = 2\omega)$$

Density of a Cox process

 \triangleright Restricted to a bounded region W, the density is

$$f(\mathbf{x}) = \mathbb{E}\left[\exp\left(|W| - \int_{W} \Lambda(u) \,\mathrm{d}u\right) \prod_{u \in \mathbf{X}} \Lambda(u)\right]$$

- ▶ Not on closed form
- ► likelihood-based inference: MCMC or Laplace approximation (INLA for log Gaussian Cox processes)
- estimating equations based on closed form expressions for intensity and pair correlation

41 / 156

- 1 Intro to point processes and moment measures
- 2. The Poisson process
- 3. Cox and cluster processes
- 4. The conditional intensity and Markov point processes
- 5. Estimating equations
- 6. Likelihood-based inference and MCMC

Exercises

1. For a Cox process with random intensity function Λ , show that

$$\rho(u) = \mathbb{E}\Lambda(u), \quad \rho^{(2)}(u, v) = \mathbb{E}[\Lambda(u)\Lambda(v)]$$

2. Show that a cluster process with $Poisson(\alpha)$ number of iid offspring is a Cox process with random intensity function

$$\Lambda(u) = \alpha \sum_{v \in \mathbf{C}} k(u - v)$$

(using notation from previous slide on cluster processes. Hint: use void probability characterisation and superposition result for Poisson process)

- 3. Compute the intensity and second-order product density for an inhomogeneous Thomas process. (Hint: interpret the Thomas process as a Cox process and use the Campbell formula)
- 4. Show that pair correlation for LCGP is $g(u, v) = \exp[\mathbb{C}\text{ov}(Y(u), Y(v))]$

42 / 156

Mucous membrane cells

Centres of cells in mucous membrane:

Repulsion due to physical extent of cells

Inhomogeneity - lower intensity in upper part

Bivariate - two types of cells

Same type of inhomogeneity for two types ?

Density with respect to a Poisson process

 ${\bf X}$ on bounded S has density f with respect to unit rate Poisson ${\bf Y}$ if

$$P(\mathbf{X} \in F) = \mathbb{E}(1[\mathbf{Y} \in F]f(\mathbf{Y}))$$

$$= \sum_{n=0}^{\infty} \frac{e^{-|S|}}{n!} \int_{S^n} 1[\mathbf{x} \in F]f(\mathbf{x}) dx_1 \dots dx_n \quad (\mathbf{x} = \{x_1, \dots, x_n\})$$

45 / 156

Intensity and conditional intensity

Suppose \mathbf{X} has *hereditary* density f with respect to Y:

$$f(\mathbf{x}) > 0 \Rightarrow f(\mathbf{y}) > 0, \mathbf{y} \subset \mathbf{x}.$$

Intensity function $\rho(u) = \mathbb{E}f(\mathbf{Y} \cup \{u\})$ usually unknown (except for Poisson and Cox/Cluster).

Instead consider conditional intensity

$$\lambda(u,\mathbf{x}) = \frac{f(\mathbf{x} \cup \{u\})}{f(\mathbf{x})}$$

(does not depend on normalizing constant!)

Note

$$\rho(u) = \mathbb{E}f(\mathbf{Y} \cup \{u\}) = \mathbb{E}\big[\lambda(u, \mathbf{Y})f(\mathbf{Y})\big] = \mathbb{E}\lambda(u, \mathbf{X})$$

and

 $\rho(u)\mathrm{d}A \approx P(\mathbf{X} \text{ has a point in } A) = \mathbb{E}P(\mathbf{X} \text{ has a point in } A|\mathbf{X}\backslash A), u\in A$ Hence, $\lambda(u,\mathbf{X})\mathrm{d}A$ probability that \mathbf{X} has point in very small region A given \mathbf{X} outside A.

Example: Strauss process

For a point configuration \mathbf{x} on a bounded region S, let $n(\mathbf{x})$ and $s(\mathbf{x})$ denote the number of points and number of (unordered) pairs of R-close points (R > 0).

A Strauss process X on S has density

$$f(\mathbf{x}) = \frac{1}{c} \exp(\beta n(\mathbf{x}) + \psi s(\mathbf{x}))$$

with respect to a unit rate Poisson process ${\bf Y}$ on ${\cal S}$ and

$$c = \mathbb{E} \exp(\beta n(\mathbf{Y}) + \psi s(\mathbf{Y})) \tag{2}$$

is the normalizing constant (unknown).

Note: only well-defined $(c < \infty)$ if $\psi \le 0$.

46 / 156

Density and conditional intensity - factorization

One-to-one correspondence between density and conditional intensity (up to normalizing constant)

$$f({x_1,\ldots,x_n}) = \prod_{i=1}^n \lambda(x_i,{x_1,\ldots,x_{i-1}})$$

Markov point processes

Def: suppose that f hereditary and $\lambda(u, \mathbf{x})$ only depends on \mathbf{x} through $\mathbf{x} \cap b(u, R)$ for some R > 0 (local Markov property). Then f is Markov with respect to the R-close neighbourhood relation.

Thm (Hammersley-Clifford) The following are equivalent.

1. f is Markov.

2.

$$f(\mathbf{x}) = \prod_{\mathbf{y} \subseteq \mathbf{x}} \phi(\mathbf{y})$$

where $\phi(\mathbf{y}) = 1$ whenever $||u - v|| \ge R$ for some $u, v \in \mathbf{y}$.

Pairwise interaction process: $\phi(\mathbf{y}) = 1$ whenever $n(\mathbf{y}) > 2$.

NB: in H-C, *R*-close neighbourhood relation can be replaced by an arbitrary symmetric relation between pairs of points.

49 / 156

51 / 156

Some examples

Strauss (pairwise interaction)

$$\lambda(u, \mathbf{x}) = \exp\left(\beta + \psi \sum_{v \in \mathbf{x}} 1[\|u - v\| \le R]\right), \quad f(\mathbf{x}) = \frac{1}{c} \exp\left(\beta n(\mathbf{x}) + \psi s(\mathbf{x})\right)$$

Overlap process (pairwise interaction marked point process):

$$\lambda((u,m),\mathbf{x}) = \frac{1}{c} \exp\left(\beta + \psi \sum_{(u',m')\in\mathbf{x}} |b(u,m) \cap b(u',m')|\right) \quad (\psi \le 0)$$

where
$$\mathbf{x} = \{(u_1, m_1), \dots, (u_n, m_n)\}$$
 and $(u_i, m_i) \in \mathbb{R}^2 \times [a, b]$.

Area-interaction process:

$$f(\mathbf{x}) = \frac{1}{c} \exp \left(\beta n(\mathbf{x}) + \psi V(\mathbf{x})\right), \quad \lambda(u, \mathbf{x}) = \exp \left(\beta + \psi (V(\{u\} \cup \mathbf{x}) - V(\mathbf{x}))\right)$$

$$V(\mathbf{x}) = |\bigcup_{u \in \mathbf{x}} b(u, R/2)|$$
 is area of union of balls $b(u, R/2)$, $u \in \mathbf{x}$.

NB: $\phi(\cdot)$ complicated for area-interaction process.

Modelling the conditional intensity function

Suppose we specify a model for the conditional intensity. Two questions:

- 1. does there exist a density *f* with the specified conditional intensity ?
- 2. is *f* well-defined (integrable) ?

Solution:

- 1. find *f* by identifying interaction potentials (Hammersley-Clifford) or guess *f*.
- 2. sufficient condition (local stability): $\lambda(u, \mathbf{x}) \leq K$

NB some Markov point processes have interactions of any order in which case H-C theorem is less useful (e.g. area-interaction process).

50 / 156

The Georgii-Nguyen-Zessin formula ('Law of total probability')

$$\mathbb{E} \sum_{u \in \mathbf{X}} k(u, \mathbf{X} \setminus \{u\}) = \int_{\mathcal{S}} \mathbb{E}[\lambda(u, \mathbf{X}) k(u, \mathbf{X})] du = \int_{\mathcal{S}} \mathbb{E}^{!}[k(u, \mathbf{X}) \mid u] \rho(u) du$$

 $\mathbb{E}^![\cdot \mid u]$: expectation with respect to the conditional distribution of $\mathbf{X} \setminus \{u\}$ given $u \in \mathbf{X}$ (reduced Palm distribution)

Density of reduced Palm distribution:

$$f(\mathbf{x} \mid u) = f(\mathbf{x} \cup \{u\})/\rho(u)$$

NB: GNZ formula holds in general setting for point process on \mathbb{R}^d .

The spatial Markov property and edge correction

Let $B \subset S$ and assume **X** Markov with interaction radius R.

Define: ∂B points in $S \setminus B$ of distance less than R

Factorization (Hammersley-Clifford):

$$f(\mathbf{x}) = \prod_{\mathbf{y} \subseteq \mathbf{x} \cap (B \cup \partial B)} \phi(\mathbf{y}) \prod_{\substack{\mathbf{y} \subseteq \mathbf{x} \setminus B: \\ \mathbf{y} \cap S \setminus (B \cup \partial B) \neq \emptyset}} \phi(\mathbf{y})$$

Hence, conditional density of $X \cap B$ given $X \setminus B$

$$f_B(\mathbf{z}|\mathbf{y}) \propto f(\mathbf{z} \cup \mathbf{y})$$

depends on \mathbf{y} only through $\partial B \cap \mathbf{y}$.

53 / 156

Exercises

1. Suppose that S contains a disc of radius $\epsilon \leq R/2$. Show that (2) is not finite, and hence the Strauss process not well-defined, when ψ is positive.

(Hint:
$$\sum_{n=0}^{\infty} \frac{(\pi\epsilon^2)^n}{n!} \exp(n\beta + \psi n(n-1)/2) = \infty$$
 if $\psi > 0$.)

- 2. Show that local stability for a spatial point process density ensures integrability. Verify that the area-interaction process is locally stable.
- 3. Starting with the conditional intensity for a Strauss process, identify the potential function ϕ

Edge correction using the border method

Suppose we observe **x** realization of $\mathbf{X} \cap W$ where $W \subset S$.

Problem: density (likelihood) $f_W(\mathbf{x}) = \mathbb{E}f(\mathbf{x} \cup Y_{S \setminus W})$ unknown.

Border method: base inference on

$$f_{W_{\ominus R}}(\mathbf{x} \cap W_{\ominus R}|\mathbf{x} \cap (W \setminus W_{\ominus R}))$$

i.e. conditional density of $\mathbf{X} \cap W_{\ominus R}$ given \mathbf{X} outside $W_{\ominus R}$.

54 / 156

Exercises

- 4. (if time) Verify the Georgii-Nguyen-Zessin formula for a finite point process.
 - (Hint: consider first the case of a finite Poisson-process \mathbf{Y} in which case the identity is known as the Slivnyak-Mecke theorem, next apply $\mathbb{E}g(\mathbf{X}) = \mathbb{E}[g(\mathbf{Y})f(\mathbf{Y})]$.)

1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC

Summary: Cox/cluster vs. Markov

	$\lambda(u \mathbf{X})$	$\rho(u)$	GNZ	Campbell	interaction
Markov	yes	no	yes	no	repulsive
Cox	no	yes	no	yes	clustering

57/156 58/156

Estimating function

Estimating function: $e(\theta)$ [$e(\theta, \mathbf{X})$] function of θ and data \mathbf{X} .

Parameter estimate $\hat{\theta}$ solution of

$$e(\theta) = 0$$

 $\hat{\theta}$ unbiased $\mathbb{E}\hat{\theta} = \theta^*$ if $e(\theta)$ unbiased $\mathbb{E}e(\theta^*) = 0$ (θ^* true value).

$$\mathbb{V}\mathrm{ar}\hat{\theta} = S^{-1}\Sigma S^{-1} \quad \Sigma = \mathbb{V}\mathrm{ar}e(\theta^*)$$

where sensitivity:

$$S = -\mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}e(\theta)\right]$$

minus expected derivative of $e(\theta)$

How do we construct unbiased estimating functions involving ${\bf X}$ and θ ?

Composite and pseudo-likelihood

Disjoint subdivision $W = \bigcup_{i=1}^{m} C_i$ in 'cells' C_i .

 $u_i \in C_i$ 'center' point.

Random indicator variables:

$$Y_i = 1[\mathbf{X} \text{ has a point in } C_i]$$

(presence/absence of points in C_i).

$$P(Y_i = 1) = |C_i|\rho_{\theta}(u_i)$$
 and $P(Y_i = 1|\mathbf{X} \setminus C_i) = |C_i|\lambda_{\theta}(u_i, \mathbf{X})$

Idea: form composite likelihoods based on Y_i , e.g.

$$\prod_{i} P(Y_i = 1)^{Y_i} (1 - P(Y_i = 1))^{1 - Y_i}$$

Consider limit when $|C_i| \rightarrow 0$.

Log composite likelihood (in fact log likelihood for Poisson):

$$\sum_{u \in \mathbf{X}} \log \rho_{\theta}(u) - \int_{W} \rho_{\theta}(u) du$$

Log pseudo-likelihood (Besag, 1977)

$$\sum_{u \in \mathbf{X}} \log \lambda_{\theta}(u, \mathbf{X} \setminus u) - \int_{W} \lambda_{\theta}(u, \mathbf{X}) du$$

Scores:

$$\sum_{u \in \mathbf{X}} \frac{\rho_{\theta}'(u)}{\rho_{\theta}(u)} - \int_{W} \rho_{\theta}'(u) du$$

and

$$\sum_{u \in \mathbf{X}} \frac{\lambda_{\theta}'(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u)} - \int_{W} \lambda_{\theta}'(u, \mathbf{X}) du$$

unbiased estimating functions by Campbell/GNZ.

Issue:

▶ integrals

$$\int_W \rho'_{ heta}(u) \mathrm{d}u$$
 and $\int_W \lambda'_{ heta}(u,\mathbf{X}) \mathrm{d}u$

often not explicitly computable.

Numerical quadrature may introduce bias.

61 / 156

Monte Carlo approximation

Let ${\bf D}$ 'quadrature/dummy' point process of intensity κ and independent of ${\bf X}.$

By GNZ

$$\mathbb{E} \int_{W} \lambda'(u, \mathbf{X}) du = \mathbb{E} \sum_{u \in \mathbf{X} \cup \mathbf{D}} \frac{\lambda'(u, \mathbf{X})}{\lambda(u, \mathbf{X}) + \kappa}$$

By Campbell

$$\int_{W} \rho'(u) du = \mathbb{E} \sum_{u \in \mathbf{X} \cup \mathbf{D}} \frac{\rho'(u)}{\rho(u) + \kappa}$$

Idea: replace integrals in pseudo- or composite likelihood with unbiased estimates using ${\bf D}.$

Dummy point process

Should be easy to simulate and mathematically tractable.

Possibilities:

- 1. Poisson process
- 2. binomial point process (fixed number of independent points)
- 3. stratified binomial point process

Stratified:

Approximate pseudo- and composite likelihood scores:

$$s(\theta) = \sum_{u \in \mathbf{X}} \frac{\lambda_{\theta}^{'}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u)} - \sum_{u \in (\mathbf{X} \cup \mathbf{D})} \frac{\lambda_{\theta}^{'}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u) + \kappa}$$

$$s(\theta) = \sum_{u \in \mathbf{X}} \frac{\rho_{\theta}^{'}(u)}{\rho_{\theta}(u)} - \sum_{u \in (\mathbf{X} \cup \mathbf{D})} \frac{\rho_{\theta}^{'}(u)}{\rho_{\theta}(u) + \kappa}$$

Note: of logistic regression/case control form with 'probabilities'

$$p(u|\mathbf{X}) = \frac{\lambda_{\theta}(u, \mathbf{X} \setminus u)}{\lambda_{\theta}(u, \mathbf{X} \setminus u) + \kappa}$$

and

$$p(u) = \frac{\rho_{\theta}(u)}{\rho_{\theta}(u) + \kappa}$$

I.e. probabilities that $u \in \mathbf{X}$ given $u \in \mathbf{X} \cup \mathbf{D}$.

Hence computations straightforward with glm() software !

65 / 156

Fitted polynomials

Fitted polynomials (with confidence intervals for selected *y* values):

Polynomials significantly different according to logistic likelihood ratio test (parametric bootstrap).

Example: mucous membrane

86 (type 1) + 807 (type 2) points.

 1×0.7 observation window.

Marked point u = (x, y, m) where m = 1 or 2 (two types of points).

Bivariate Strauss point process with

$$\lambda_{\theta}(u, \mathbf{X}) = \exp[q_{m,\theta}(y) + \psi n_R(u, \mathbf{X})]$$

 $q_{m,\theta}(y)$: polynomial in spatial y-coordinate.

 $n_R(u, \mathbf{X})$: number of neighbors within range R = 0.008.

3600 stratified dummy points (random marks 1 or 2).

66 / 156

Issue: X inhomogeneous

$$\lambda_m(u) = \exp[q_m(y)] \mathbb{E} \exp[\psi n_R(u, \mathbf{X})]$$

so intensity function not proportional to log polynomial function.

Baddeley and Nair (2012): approximation of intensity functions for Gibbs point processes

67 / 156 68 / 156

Decomposition of variance

		36	500	14400			
	estm.	sd	sd _{pl}	inc. (%)	sd	sd _{pl}	inc. (%)
$q_1(0.1)$	6.004	0.195	0.189	3.608	0.19	0.189	0.812
$q_1(0.3)$	4.528	0.267	0.263	1.332	0.26	4 0.263	0.301
$q_1(0.5)$	3.994	0.406	0.404	0.555	0.40	4 0.404	0.146
$q_2(0.1)$	7.800	0.091	0.078	15.623	0.08	2 0.079	3.801
$q_2(0.3)$	7.204	0.083	0.075	10.923	0.07	6 0.075	2.589
$q_2(0.5)$	7.123	0.086	0.077	10.558	0.08	0.078	2.824
ψ	-2.594	0.344	0.341	0.971	0.34	2 0.341	0.197

 $\text{sd}_{\text{pl}} \approx \text{standard}$ deviation for pseudo-likelihood without approximation.

69 / 156

Problem: covariates sampled on (coarse) deterministic grid.

Plots shown: interpolated values of covariates.

Hence unbiased Monte Carlo approximation not applicable.

For now: integral in log composite likelihood

$$\sum_{u \in \mathbf{X}} \log \rho_{\beta}(u) - \int_{W} \rho_{\beta}(u) du$$

approximated using numerical quadrature based on interpolated values.

Need to convince biologists to use random sampling designs.

Example: rain forest trees

Capparis Frondosa

Loncocharpus Heptaphyllus

Potassium content in soil.

Covariates pH, elevation, gradient, potassium,...

Clustered point patterns: Cox point process natural model.

Objective: infer regression model $\rho_{\beta}(u) = \exp[\beta Z(u)^{\mathsf{T}}]$

Composite likelihood targeted at estimating intensity function.

70 / 156

Another issue: optimality ?

Composite likelihood score

$$\sum_{u \in \mathbf{X}} \frac{\rho_{\beta}'(u)}{\rho_{\beta}(u)} - \int_{W} \rho_{\beta}'(u) du$$

optimal for Poisson (likelihood).

Which f makes

$$e_f(\beta) = \sum_{u \in \mathbf{X}} f(u) - \int_W f(u) \rho_{\beta}(u) du$$

optimal for Cox point process (positive dependence between points) ?

Optimal first-order estimating equation

Optimal choice of f: smallest variance

$$\mathbb{V}\mathrm{ar}\hat{\beta} = V_f = S_f^{-1}\Sigma_f S_f^{-1}$$

where

$$S_f = -\mathbb{E} rac{\mathrm{d}}{\mathrm{d}eta^\mathsf{T}} e_f(eta) \quad \Sigma_f = \mathbb{V}\mathrm{ar} e_f(eta)$$

Possible to obtain optimal f as solution of certain Fredholm integral equation.

Numerical solution of integral equation leads to estimating function of quasi-likelihood type.

73 / 156

Quasi-likelihood

Integral equation approximated using Riemann sum dividing W into cells C_i with representative points u_i .

Resulting estimating function is quasi-likelihood

$$(Y - \mu)V^{-1}D$$

based on

$$Y = (Y_1, \dots, Y_m), \quad Y_i = 1[\mathbf{X} \text{ has point in } C_i].$$

 μ mean of Y:

$$\mu_i = \mathbb{E} Y_i =
ho_eta(u_i) |C_i|$$
 and $D = \left[\mathrm{d}\mu(u_i) / \mathrm{d}eta_I \right]_{iI}$

V covariance of Y (involves covariance of random intensity):

$$V_{ij} = \mathbb{C}\text{ov}[Y_i, Y_j] = \mu_i 1[i = j] + |C_i||C_j|[g(u_i, u_j) - 1]$$

74 / 156

Results with composite likelihood and quasi-likelihood

species	$\widehat{\beta}$	
Loncocharpus	CL	$-6.49 - 0.021 \mathtt{Nmin} - 0.11\mathtt{P} - 0.59\mathtt{pH} - 0.11\mathtt{twi}$
		$(81.06^*, 7.45^*, 58.78, 282.89^*, 53.19^*) \times 10^{-3}$
	QL	$-6.49 - 0.023 \mathtt{Nmin} - 0.12\mathtt{P} - 0.55\mathtt{pH} - 0.084\mathtt{twi}$
		$(80.15^*, 6.95^*, 55.23^*, 266.10^*, 45.47) \times 10^{-3}$
Capparis	CL	-5.07 + 0.028ele -1.10 grad $+0.0043$ K
		$(79.54^*, 9.98^*, 1200.36, 1.16^*) \times 10^{-3}$
	QL	-5.10 + 0.019ele -2.50 grad $+0.0039$ K
		$(77.77^*, 8.86^*, 935.02^*, 1.02^*) \times 10^{-3}$

Estimated standard errors always smallest for QL. Covariate grad significant according to QL but not for CL.

Estimation of pair correlation function

Suppose parametric model $g(\cdot; \psi)$ for pair correlation.

Some options:

- 1. minimum contrast estimation based on K-function.
- 2. second-order composite likelihood: composite likelihood based on indicators for joint occurrence of points in pairs of cells:

$$X_{ij} = 1[N_i > 0 \text{ and } N_j > 0]$$

$$P_{\beta,\psi}(X_{ij} = 1) = \rho^{(2)}(u, v; \beta, \psi)|C_i||C_j|$$

= $\rho_{\beta}(u_i)\rho_{\beta}(v_i)g(u_i - u_i; \psi)|C_i||C_i|$

Minimum contrast estimation for ψ

Computationally easy alternative if \mathbf{X} second-order reweighted stationary so that K-function well-defined.

Estimate of *K*-function:

$$\hat{\mathcal{K}}_{\beta}(t) = \sum_{u,v \in \mathbf{X} \cap W} \frac{1[0 < \|u - v\| \le t]}{\rho(u;\beta)\rho(v;\beta)} e_{u,v}$$

Unbiased if β 'true' regression parameter.

Minimum contrast estimation: minimize squared distance between theoretical K and \hat{K} :

$$\hat{\psi} = \operatorname*{argmin}_{\psi} \int_{0}^{r} \left(\hat{\mathcal{K}}_{\hat{eta}}(t) - \mathcal{K}(t;\psi)\right)^{2} \mathrm{d}t$$

Fitted pair correlation functions $g(\cdot)$ for Capparis and Loncocharpus

Use shot-noise Cox process with dispersal kernel given by variance-gamma density.

Then g(h)-1 *Matérn covariance* function depending on smoothness/shape parameter ν .

Loncocharpus: Matérn $\nu = 0.5$

Capparis: Matérn $\nu = 0.25$

Second-order composite likelihood

Second-order composite likelihood (given $\hat{\beta}$):

$$\begin{aligned} \mathsf{CL}_2(\psi|\hat{\beta}) &= \prod_{\substack{u,v \in \mathbf{X} \cap W \\ \|u-v\| \leq R}}^{\neq} \rho^{(2)}(u,v;\hat{\beta},\psi) \times \\ &\exp[-\iint_{\|u-v\| \leq R} \rho^{(2)}(u,v;\hat{\beta},\psi) \mathrm{d}u \mathrm{d}v] \end{aligned}$$

NB: second-order reweighted stationarity (translation invariant pair correlation) not required.

78 / 156

Two-step estimation

Obtain estimates $(\hat{\beta}, \hat{\psi})$ in two steps

- 1. obtain $\hat{\beta}$ using composite likelihood
- 2. obtain $\hat{\psi}$ using minimum contrast/second order composite likelihood

Asymptotic results - first order estimating function

Divide \mathbb{R}^2 into quadratic cells $A_{ij} = [i, i+1] \times [j, j+1]$

Then

$$e_f(eta) = \sum_{ij: A_{ij} \subseteq W} U_{ij}$$

where

$$U_{ij} = \sum_{u \in \mathbf{X} \cap A_{ij}} f_{\beta}(u) - \int_{A_{ij}} f_{\beta}(u) \rho_{\beta}(u) du$$

Assuming **X** is mixing, $\{U_{ij}\}_{ij}$ mixing random field and

$$|W|^{-1/2}e_f(\beta) \approx N(0, \Sigma_f)$$

(CLT for mixing random field $\{U_{ij}\}_{ij}$).

Asymptotic results cntd.

Estimate $\hat{\beta}$ solves

$$e_f(\beta) = 0$$

And (Taylor)

$$e_f(\beta) \approx |W|(\hat{\beta} - \beta)S_f \Leftrightarrow (\hat{\beta} - \beta) = |W|^{-1}e_f(\beta)S_f^{-1}$$

where

$$S_f = -\mathbb{E} rac{\mathrm{d}}{\mathrm{d}eta^\mathsf{T}} e_f(eta)/|W|$$

It follows that

$$\hat{\beta} \approx N(\beta, V_f/|W|)$$

where

$$V_f = S_f^{-1} \Sigma_f S_f^{-1}$$

82 / 156

Alternative: "infill" / increasing intensity-asymptotics

If **X** infinitely divisible (e.g. Poisson or Poisson-cluster) then $\mathbf{X} = \bigcup_{i=1}^{n} \mathbf{X}_{n}$ where \mathbf{X}_{i} iid and intensity of **X** is $\rho_{\beta}(u) = n\tilde{\rho}(u;\beta)$ where $\tilde{\rho}_{\beta}$ intensity of \mathbf{X}_{i}

$$e_f(\beta) = \sum_{i=1}^n \left[\sum_{u \in \mathbf{X}_i} f_{\beta}(u) - \int_W f_{\beta}(u) \tilde{\rho}(u; \beta) du \right]$$

Ordinary CLT applies.

Exercises

81 / 156

- 1. Check using the GNZ formula, that the score of the pseudo-likelihood is an unbiased estimating function.
- 2. show that the approximate pseudo- and composite likelihood scores (slide 66) are of logistic regression score form when the intensity or conditional intensity is log linear
- 3. Check that the derivative of minimum contrast criterion and the score of the second order composite likelihood function are unbiased estimating functions when β is equal to the true value.
- 4. Derive the second-order product density of a stratified binomial point process with one point in each cell.
- 5. How can you partition af Poisson-cluster process **X** into a union $\bigcup_{i=1}^{n} \mathbf{X}_{i}$ of *iid* Poisson-cluster processes ?

- 1. Intro to point processes and moment measures
- 2. The Poisson process
- 3. Cox and cluster processes
- 4. The conditional intensity and Markov point processes
- 5. Estimating equations
- 6. Likelihood-based inference and MCMC

Importance sampling

Importance sampling: θ_0 fixed reference parameter:

$$I(\theta) \equiv \log h_{\theta}(\mathbf{x}) - \log \frac{c(\theta)}{c(\theta_0)}$$

and

$$rac{c(heta)}{c(heta_0)} = \mathbb{E}_{ heta_0} rac{h_{ heta}(\mathbf{X})}{h_{ heta_0}(\mathbf{X})}$$

Hence

$$rac{c(heta)}{c(heta_0)} pprox rac{1}{m} \sum_{i=0}^{m-1} rac{h_{ heta}(\mathbf{X}^i)}{h_{ heta_0}(\mathbf{X}^i)}$$

where $\mathbf{X}^0, \mathbf{X}^1, \ldots,$ sample from f_{θ_0} (later).

Maximum likelihood inference for point processes

Concentrate on point processes specified by unnormalized density $h_{\theta}(\mathbf{x})$,

$$f_{ heta}(\mathbf{x}) = \frac{1}{c(heta)} h_{ heta}(\mathbf{x})$$

Problem: $c(\theta)$ in general unknown \Rightarrow unknown log likelihood

$$I(\theta) = \log h_{\theta}(\mathbf{x}) - \log c(\theta)$$

85 / 156

Exponential family case

$$h_{\theta}(\mathbf{x}) = exp(t(\mathbf{x})\theta^{\mathsf{T}})$$

$$I(\theta) = t(\mathbf{x})\theta^{\mathsf{T}} - \log c(\theta)$$

$$\frac{c(\theta)}{c(\theta_0)} = \mathbb{E}_{\theta_0} \exp(t(\mathbf{X})(\theta - \theta_0)^\mathsf{T})$$

Caveat: unless $\theta - \theta_0$ 'small', $\exp(t(\mathbf{X})(\theta - \theta_0)^{\mathsf{T}})$ has very large variance in many cases (e.g. Strauss).

Path sampling (exp. family case)

Derivative of cumulant transform:

$$rac{\mathrm{d}}{\mathrm{d} heta}\lograc{c(heta)}{c(heta_0)}=\mathbb{E}_{ heta}t(\mathbf{X})$$

Hence, by integrating over differentiable path $\theta(t)$ (e.g. line) linking θ_0 and θ_1 :

$$\log \frac{c(\theta_1)}{c(\theta_0)} = \int_0^1 \mathbf{E}_{\theta(s)}[t(\mathbf{X})] \frac{\mathrm{d}\theta(s)^\mathsf{T}}{\mathrm{d}s} \mathrm{d}s$$

Approximate $E_{\theta(s)}t(\mathbf{X})$ by Monte Carlo and \int_0^1 by numerical quadrature (e.g. trapezoidal rule).

NB Monte Carlo approximation on log scale more stable.

Maximisation of likelihood (exp. family case)

Score and observed information:

$$u(\theta) = t(\mathbf{x}) - \mathbf{E}_{\theta} t(\mathbf{X}), \quad j(\theta) = \mathbf{Var}_{\theta} t(\mathbf{X}),$$

Newton-Rahpson iterations:

89 / 156

$$\theta^{m+1} = \theta^m + u(\theta^m)j(\theta^m)^{-1}$$

Monte Carlo approximation of score and observed information: use importance sampling formula

$$\mathrm{E}_{ heta}k(\mathbf{X}) = \mathrm{E}_{ heta_0}\left[k(\mathbf{X})\exp\left(t(\mathbf{X})(heta - heta_0)^{\mathsf{T}}
ight)
ight]/(c_{ heta}/c_{ heta_0})$$

with $k(\mathbf{X})$ given by $t(\mathbf{X})$ or $t(\mathbf{X})^{\mathsf{T}}t(\mathbf{X})$.

90 / 156

MCMC simulation of spatial point processes

Birth-death Metropolis-Hastings algorithm for generating ergodic sample X^0, X^1, \ldots from locally stable density f on S:

Suppose current state is \mathbf{X}^{i} , i > 0.

- 1. Either: with probability 1/2
 - (birth) generate new point u uniformly on S and accept $\mathbf{X}^{\mathsf{prop}} = \mathbf{X}^i \cup \{u\}$ with probability

$$\min\Big\{1,\frac{f(\mathbf{X}^i\cup\{u\})|S|}{f(\mathbf{X}^i)(n+1)}\Big\}$$

or

• (death) select uniformly a point $u \in \mathbf{X}^i$ and accept $\mathbf{X}^{\mathsf{prop}} = \mathbf{X}^i \setminus \{u\}$ with probability

$$\min\left\{1, \frac{f(\mathbf{X}^i \setminus \{u\})n}{f(\mathbf{X}^i)|S|}\right\}$$

(if $\mathbf{X}^i = \emptyset$ do nothing)

2. if accept $\mathbf{X}^{i+1} = \mathbf{X}^{\text{prop}}$; otherwise $\mathbf{X}^{i+1} = \mathbf{X}^{i}$.

Initial state X_0 : arbitrary (e.g. empty or simulation from Poisson process).

Note: Metropolis-Hastings ratio does not depend on normalizing constant:

$$\frac{f(\mathbf{X}^i \cup \{u\})|S|}{f(\mathbf{X}^i)(n+1)} = \lambda(u, \mathbf{X}^i) \frac{|S|}{(n+1)}$$

Generated Markov chain $\mathbf{X}_0, \mathbf{X}_1, \ldots$ irreducible and aperiodic and hence ergodic: $\frac{1}{m} \sum_{i=0}^{m-1} k(\mathbf{X}^i) \to \mathbb{E} k(\mathbf{X})$

Moreover, geometrically ergodic and CLT:

$$\sqrt{m}\Big(rac{1}{m}\sum_{i=0}^{m-1}k(\mathbf{X}^i)-\mathbb{E}k(\mathbf{X})\Big)
ightarrow N(0,\sigma_k^2)$$

Missing data

Suppose we observe \mathbf{x} realization of $\mathbf{X} \cap W$ where $W \subset S$. Problem: likelihood (density of $\mathbf{X} \cap W$)

$$f_{W,\theta}(\mathbf{x}) = \mathbb{E} f_{\theta}(\mathbf{x} \cap \mathbf{Y}_{S \setminus W})$$

not known - not even up to proportionality ! (\mathbf{Y} unit rate Poisson on S)

Possibilities:

- Monte Carlo methods for missing data.
- ► Conditional likelihood

$$f_{W_{\ominus R}, \theta}(\mathbf{x} \cap W_{\ominus R} | \mathbf{x} \cap (W \setminus W_{\ominus R})) \propto \exp(t(\mathbf{x})\theta^{\mathsf{T}})$$

(note: $\mathbf{x} \cap (W \setminus W_{\ominus R})$ fixed in $t(\mathbf{x})$)

93 / 156

Likelihood

$$L(\theta) = \mathbb{E}_{\theta} f(\mathbf{x}|\mathbf{M}) = L(\theta_0) \mathbb{E}_{\theta_0} \Big[\frac{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta)}{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta_0)} \, \Big| \, \mathbf{X} \cap W = \mathbf{x} \Big]$$

 $+ \ derivatives \ can \ be \ estimated \ using \ importance \ sampling/MCMC$

- however more difficult than for Markov point processes.

Bayesian inference: introduce prior $p(\theta)$ and sample posterior

$$p(\theta, \mathbf{m}|\mathbf{x}) \propto f(\mathbf{x}, \mathbf{m}; \theta) p(\theta)$$

(data augmentation) using birth-death MCMC.

Likelihood-based inference for Cox/Cluster processes

Consider Cox/cluster process X with random intensity function

$$\Lambda(u) = \alpha \sum_{m \in \mathbf{M}} f(m, u)$$

observed within W (**M** Poisson with intensity κ).

Assume $f(m,\cdot)$ of bounded support and choose bounded \tilde{W} so that

$$\Lambda(u) = \alpha \sum_{m \in \mathbf{M} \cap \tilde{W}} f(m, u) \quad \text{ for } u \in W$$

 $(\mathbf{X} \cap W, \mathbf{M} \cap \tilde{W})$ finite point process with density:

$$f(\mathbf{x}, \mathbf{m}; \theta) = f(\mathbf{m}; \theta) f(\mathbf{x} | \mathbf{m}; \theta) = e^{|\tilde{W}|(1-\kappa)} \kappa^{n(\mathbf{m})} e^{|W| - \int_{W} \Lambda(u) du} \prod_{u \in \mathbf{x}} \Lambda(u)$$

94 / 156

Maximum likelihood estimation for log Gaussian Cox processes

Likelihood (probability density) for Cox process given observed point pattern \mathbf{x} :

$$f_{\theta}(\mathbf{x}) = \mathbb{E}_{\theta}[\exp(-\int_{W} \Lambda(u) du) \prod_{u \in \mathbf{x}} \Lambda(u)]$$

Problem for Monte Carlo approximation: $\Lambda = \{\Lambda(u)\}_{u \in W}$ infinitely dimensional quantity.

LCGP: approximate inference by discretizing random field $\Lambda(u) = \exp(\beta Z(u)^{T} + Y(u))$

Counts N_i Poisson with mean

$$\exp(\beta Z(u_i)^{\mathsf{T}} + Y(u_i))|C_i|$$

(Poisson GLMM)

Computations: MCMC+FFT or INLA (Laplace approximations using Markov random fields for Gaussian field).

97 / 156

Exercises

1. Check the importance sampling formulas

$$\mathrm{E}_{ heta}k(\mathbf{X}) = \mathrm{E}_{ heta_0}\left[k(\mathbf{X})rac{h_{ heta}(\mathbf{X})}{h_{ heta_0}(\mathbf{X})}
ight]/(c_{ heta}/c_{ heta_0})$$

and

$$\frac{c(\theta)}{c(\theta_0)} = \mathbb{E}_{\theta_0} \frac{h_{\theta}(\mathbf{X})}{h_{\theta_0}(\mathbf{X})} \tag{3}$$

2. Show that the formula

$$L(\theta)/L(\theta_0) = \mathbb{E}_{\theta_0} \Big[\frac{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta)}{f(\mathbf{x}, \mathbf{M} \cap \tilde{W}; \theta_0)} \, \Big| \, \mathbf{X} \cap W = \mathbf{x} \Big]$$

follows from (3) by interpreting $L(\theta)$ as the normalizing constant of $f(\mathbf{m}|\mathbf{x};\theta) \propto f(\mathbf{x},\mathbf{m};\theta)$.

 (practical exercise) Compute MLEs for a multiscale process applied to the spruces data. Use the newtonraphson.mpp() procedure in the package MppMLE.

98 / 156

Solution: second order product density for Poisson

$$\mathbb{E} \sum_{u,v \in \mathbf{X}}^{\neq} 1[u \in A, v \in B]$$

$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} \int_{(A \cup B)^n} \sum_{u,v \in \mathbf{X}}^{\neq} 1[u \in A, v \in B] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

$$= \sum_{n=2}^{\infty} \frac{e^{-\mu(A \cup B)}}{n!} 2\binom{n}{2} \int_{(A \cup B)^n} \int_{(A \cup B)^n} 1[x_1 \in A, x_2 \in B] \prod_{i=1}^n \rho(x_i) dx_1 \dots dx_n$$

$$= \sum_{n=2}^{\infty} \frac{e^{-\mu(A \cup B)}}{(n-2)!} \mu(A) \mu(B) \mu(A \cup B)^{n-2}$$

$$= \mu(A) \mu(B) = \int_{A \times B} \rho(u) \rho(v) du dv$$

Solution: invariance of g (and K) under thinning

Since
$$\mathbf{X}_{thin} = \{u \in \mathbf{X} : R(u) \le p(u)\}$$

$$\mathbb{E} \sum_{u,v \in \mathbf{X}_{\text{thin}}}^{\neq} 1[u \in A, v \in B]$$

$$= \mathbb{E} \sum_{u,v \in \mathbf{X}}^{\neq} 1[R(u) \leq p(u), R(v) \leq p(v), u \in A, v \in B]$$

$$= \mathbb{E} \mathbb{E} \left[\sum_{u,v \in \mathbf{X}}^{\neq} 1[R(u) \leq p(u), R(v) \leq p(v), u \in A, v \in B] \mid \mathbf{X} \right]$$

$$= \mathbb{E} \sum_{u,v \in \mathbf{X}}^{\neq} p(u)p(v)1[u \in A, v \in B]$$

$$= \int_{\mathbf{X}} \int_{\mathbf{D}} p(u)p(v)\rho^{(2)}(u,v) du dv$$