
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

stpp: An R Package for Plotting, Simulating and

Analysing Spatio-Temporal Point Patterns

Edith Gabriel
Université d’Avignon

et des Pays de Vaucluse

Barry Rowlingson
Lancaster University

Peter J Diggle
Lancaster University

University of Liverpool

Abstract

stpp is an R package for analysing, simulating and displaying space-time point patterns.
It covers many of the models encountered in applications of point process methods to the
study of spatio-temporal phenomena. The package also includes estimators of the space-
time inhomogeneous K-function and pair correlation function. stpp is the first dedicated
unified computational environment in the area of spatio-temporal point processes. In this
paper we describe space-time point processes and introduce the package stpp to new users.

Keywords: epidemiology, inhomogeneous point patterns, spatial statistics, space-time point
processes.

1. Introduction

A spatial point pattern is a set of data taking the form of a set of locations, irregularly
distributed within a study region S, at which events have been recorded, for example the
locations of trees in a naturally regenerated forest (Diggle 2003). An observed spatial point
pattern can be modelled as a realisation of a spatial stochastic process represented by a set
of random variables: Y (Sm), Sm ⊂ S, where Y (Sm) is the number of events occurring in a
sub-region Sm of S.

Many spatial processes of scientific interest also have a temporal component that may need
to be considered when modelling the underlying phenomenon (e.g., distribution of cases for
a disease or assessment of risk of air pollution). Spatio-temporal point processes, rather
than purely spatial point processes, must then be considered as potential models. There is
an extensive literature on the analysis of point process data in time (e.g., Cox and Isham
1980; Daley and Vere-Jones 2003) and in space (e.g., Cressie 1993; Diggle 2003; Møller and
Waagepetersen 2003). Generic methods for the analysis of spatio-temporal point processes

http://www.jstatsoft.org/

2 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

are less well established; see for example Diggle (2006), Diggle and Gabriel (2010) and Section
6.6 of Cressie and Wikle (2011). There is, however, an extensive literature on the use of point
process models in the specific field of seismology; see, for example, Zhuang, Ogata, and Jones
(2002) and references therein.

When dealing with a single realisation of a point process, simulation methods offer various
ways to understand and model the underlying process: goodness-of-fit tests, calculation of
summary statistics, . . . (see Illian, Penttinen, Stoyan, and Stoyan 2008). Simulation of spatial
point processes is mainly implemented in the R packages spatstat (Baddeley and Turner
2005) and splancs (Rowlingson and Diggle 1993). A wide variety of random data-generation
functions is implemented in stpp, which make up the lack of point process models in the
spatio-temporal setting.

In this paper, we introduce the R (R Development Core Team 2012) package stpp which
covers many of the models encountered in applications of point process methods to the study
of spatio-temporal phenomena. First, in Section 2, we define spatio-temporal point processes
and provide statistical tools for analysing their second-order properties. Then, in Section 3,
we present models for such processes and some algorithms for their simulation.

2. Spatio-temporal point processes

The events of a spatio-temporal point process form a countable set of points, P = {(si, ti) :
i = 1, 2, ...}, in which si ∈ R2 is the location and ti ∈ T ⊂ R+ is the time of occurrence of
the ith event. In practice, the data available for analysis are the points (xi, ti) : i = 1, ..., n
that form the partial realisation of the process restricted to a finite spatio-temporal domain
of observation, S × T , where typically S is a polygon and T a single closed interval.

In the following, Y (A) denotes the number of events in an arbitrary region A.

2.1. First-order and second-order properties

First-order properties are described by the intensity of the process,

λ(s, t) = lim
|ds|→0,|dt|→0

E [Y (ds, dt)]

|ds||dt|
,

where ds defines a small spatial region around the location s, |ds| is its area, dt is a small
interval containing the time t, |dt| is the length of this interval and Y (ds, dt) refers to the
number of events in ds× dt. Thus, informally, λ(s, t) is the mean number of events per unit
volume at the location (s, t). A process for which λ(s, t) = λ for all (s, t) is called homogeneous.

Second-order properties describe the relationship between numbers of events in pairs of sub-
regions within S × T . The second-order intensity is defined as

λ2

(
(si, ti), (sj , tj)

)
= lim
|Di|,|Dj |→0

E [Y (Di)Y (Dj)]

|Di||Dj |
,

where Di = dsi× dti and Dj = dsj × dtj are small cylinders containing the points (si, ti) and
(sj , tj) respectively.

Other, essentially equivalent, descriptors of second-order properties include the covariance
density,

γ
(
(si, ti), (sj , tj)

)
= λ2

(
(si, ti), (sj , tj)

)
− λ(si, ti)λ(sj , tj)

Journal of Statistical Software 3

and the radial distribution function or point-pair correlation function (Cressie 1993; Diggle
2003)

g
(
(si, ti), (sj , tj)

)
=
λ2

(
(si, ti), (sj , tj)

)
λ(si, ti)λ(sj , tj)

. (1)

The covariance density is the point process analogue of the covariance function of a real-
valued stochastic process. The pair correlation function can be interpreted informally as the
standardised probability density that an event occurs in each of two small volumes centred on
the points (si, ti) and (sj , tj). For a spatio-temporal Poisson process (to be defined formally
in Section 3.1), the covariance density is identically zero and the pair correlation function is
identically 1. Larger or smaller values than these benchmarks therefore indicate informally
how much more or less likely it is that a pair of events will occur at the specified locations
than in a Poisson process with the same intensity.

2.2. Stationarity

A spatio-temporal point process {(s, t), s ∈ S, t ∈ T} is first-order and second-order stationary:

• in space, if: λ(s, t) ≡ λ(t) and λ2

(
(s, t), s′, t)

)
= λ2(s− s′, t).

• in time, if: λ(s, t) ≡ λ(s) and λ2

(
(s, t), (s, t′)

)
= λ2(s, t− t′).

• in both space and time, if: λ(s, t) = λ and λ2

(
(s, t), (s′, t′)

)
= λ2(s− s′, t− t′).

A stationary spatio-temporal point process is also isotropic if λ2

(
(s, t), (s′, t′)

)
= λ2(u, v),

where (u, v) is the spatio-temporal difference vector, u = ‖s− s′‖ and v = |t− t′|.
A spatio-temporal point process is second-order intensity reweighted stationary and isotropic if
its intensity function is bounded away from zero and its pair correlation function depends only
on the spatio-temporal difference vector (u, v). Second-order intensity reweighted stationarity
is defined for purely spatial point processes in Baddeley, Møller, and Waagepetersen (2000).
Gabriel and Diggle (2009) provide the straightforward extension to the spatio-temporal case.

2.3. Separability

A spatio-temporal point process is first-order separable if its intensity λ(s, t) can be factorised
as

λ(s, t) = m(s)µ(t), for all (s, t) ∈ S × T.

A stationary spatio-temporal point process is second-order separable if the covariance density,
γ(u, v) = λ2(u, v)− λ2, factorises as

γ(u, v) = γs(u)γt(v).

Note that in general, second-order separability is implied by, but does not imply, independence
of the spatial and temporal component processes. However, a Poisson process has independent
components if and only if it is first-order separable.

2.4. Static and dynamic plotting of spatio-temporal point process data

The most effective form of display for a spatio-temporal point process data is an animation,
repeated viewing of which may yield insights that are not evident in static displays. Nev-
ertheless, static displays are sometimes useful summaries. The stpp package includes four

4 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

280000 320000 360000 400000

48
00

00
52

00
00

56
00

00

50 100 150 200

0
10

00
0

20
00

0
30

00
0

40
00

0

time (days)

cu
mu

lat
ive

 nu
mb

er

Figure 1: Static two-panel plot of data from the 2001 UK FMD epidemic in the county of
Cumbria.

display functions that we illustrate using data on the locations and times (dates of reporting)
of outbreaks of foot-and-mouth disease (FMD), a severe, highly communicable viral disease
of farm livestock, during the UK 2001 FMD epidemic.

The data-set fmd, included in stpp, contains a three-column matrix of spatial locations and
reported days (from 1 February 2001) of FMD outbreaks in the county of Cumbria. Fig-
ure 1 shows a static display of the data consisting of locations in the left-hand panel and the
cumulative distribution of the times in the right-hand panel. The left-hand panel shows a
very uneven distribution which, in the context of this data-set, is of limited interest without
knowledge of the spatial distribution of all of the farms at risk. The right-hand panel shows
the characteristic S-shape of an epidemic process. At the beginning of the epidemic the cu-
mulative number of cases increases slowly, because the virus can be transmitted only over
short distances and few of the susceptible farms are within range of the early cases. This is
followed by a period of rapid increase, as the infected area spreads and there are correspond-
ingly more susceptible farms within the transmission range. Finally, the rate of spread slows
down as the epidemic is brought under control through a combination of reactive culling of
infected animals and pre-emptive culling of animals at nearby farms (Keeling, Woolhouse,
Shaw, Matthews, Chase-Topping, Haydon, Cornell, Kappey, Wilesmith, and Grenfell 2001).

Figure 1 can be obtained in a single command after converting the data-set into an object of
class ‘stpp’ as follows.

R> library("stpp")

R> data("fmd")

R> data("northcumbria")

R> fmd <- as.3dpoints(fmd)

R> plot(fmd, s.region=northcumbria)

Additional graphical arguments can be passed to the plot function provided that these can
be interpreted unambiguously; see ?plot.stpp for details.

Figure 2 shows an alternative static display in which the time is treated as a quantitative
mark attached to each location, and the locations are plotted with the size and/or colour
of the plotting symbol determined by the value of the mark. This plot can be obtained as
follows.

Journal of Statistical Software 5

300000 340000 380000

48
00

00
52

00
00

56
00

00

x

y

Figure 2: Static plot of data from the 2001 UK FMD epidemic. Time is treated as a quanti-
tative mark; light grey/small dots correspond to the oldest events and dark grey/large dots
correspond to the most recent events.

R> plot(fmd, s.region = northcumbria, pch = 19, mark = TRUE)

The function animation provides an animation of a space-time point pattern.

R> animation(fmd, runtime = 10, cex = 0.5, s.region = northcumbria)

The approximate running time of the animation (in seconds) is set through the runtime

parameter, although the animation may actually run more slowly than this, depending on
the size of the data-set and the hardware configuration. If runtime = NULL, the animation
is displayed as quickly as the data-set and hardware configuration allow.

A second form of dynamic display is provided by the stan function. This enables dynamic
highlighting of time slices controlled by two arguments set by using sliders: when the ‘time’
slider is set to T and the ‘width’ slider to W , highlighted points are those whose time coordi-
nate t satisfies T −W < t < T . Plotting of individual locations is controlled with the ‘states’
parameter. This is a list of length three specifying how locations whose associated times fall
before, within and after the time window are displayed. The use of sliders allows the user
to track backward or forward in time at will. This function requires the packages rgl (Adler
and Murdoch 2012) and rpanel (Bowman, Gibson, Scott, and Crawford 2010), which can be
downloaded and installed from the Comprehensive R Archive Network (CRAN) repository
(www.r-project.org).

R> library("rgl")

R> library("rpanel")

R> stan(fmd, bgpoly = northcumbria, bgframe = FALSE)

Repeated viewing of either of the dynamic graphical displays shows two main features of
the epidemic. Firstly, there was a progressive movement of the epidemic’s focus from its
origin in the north of the county to the west, and later to the south-east. Secondly, the
pattern consists predominantly of spatio-temporal spread between neighbouring farms, but

6 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

with occasional and apparently spontaneous infections occurring remotely from previously
infected areas.

2.5. Analysing space-time point process data

Second-order properties described in Section 2.1 are used to analyse the spatio-temporal
structure of a point process. In particular, the space-time inhomogeneous pair correlation
function and K-function can be used as measure of spatio-temporal clustering/regularity and
as measure of spatio-temporal interaction (Gabriel and Diggle 2009; Møller and Ghorbani
2012).

Space-time inhomogeneous K-function

For a second-order intensity reweighted stationary, isotropic spatio-temporal point process,
the space-time inhomogeneous K-function (STIK-function) defined by Gabriel and Diggle
(2009) is

KST (u, v) = 2π

∫ v

0

∫ u

0
g(u′, v′)u′ du′ dv′, (2)

where g(u, v) = λ2(u, v)/ (λ(s, t)λ(s′, t′)), u = ‖s − s′‖ and v = |t − t′|. Gabriel and Diggle
(2009) also give a second definition that considers both past and future events,

K∗ST (u, v) = 2π

∫ v

−v

∫ u

0
g(u′, v′)u′ du′ dv′. (3)

The STIK function characterizes the second-order properties of a second-order intensity
reweighted stationary spatio-temporal point process, and can be used as a measure of spatio-
temporal aggregation or regularity. For any inhomogeneous spatio-temporal Poisson pro-
cess (see Section 3.1) with intensity bounded away from zero, KST (u, v) = πu2v. Values of
KST (u, v) greater than πu2v indicate aggregation at cumulative spatial and temporal separa-
tions less than u and v, whilst KST (u, v) < πu2v indicates regularity. The STIK function can
also be used to test for space-time clustering and space-time interaction (Gabriel and Diggle
2009; Møller and Ghorbani 2012).

The function STIKhat implements a non-parametric estimator of the STIK function, as defined
by

K̂ST (u, v) =
1

|S × T |
n

nv

nv∑
i=1

nv∑
j=1;j>i

1

wij

1

λ(si, ti)λ(sj , tj)
1{‖si−sj‖≤u ; tj−ti≤v}. (4)

if parameter infectious = TRUE or by

K̂∗ST (u, v) =
1

|S × T |

n∑
i=1

∑
j 6=i

1

wijvij

1

λ(si, ti)λ(sj , tj)
1{‖si−sj‖≤u ; |tj−ti|≤v}. (5)

otherwise. In Equation 4, nv is the number of events for which ti ≤ T1 − v, T = [T0, T1]. In
Equations 4 and 5, wij denotes the Ripley’s spatial edge correction factor. This consists in
weighting by the proportion of the circumference of a circle centred at the location si with
radius ‖si−sj‖ lying in S. In Equation 5 vij denotes the temporal edge correction factor (the
one-dimensional analogue of the Ripley’s edge correction factor). It is equal to 1 if both ends
of the interval of length 2|ti − tj | centred at ti lie within T and 1/2 otherwise.

Journal of Statistical Software 7

In practice, λ(x) must be estimated. See Gabriel (2012) for a discussion of such an estimation.

Space-time inhomogeneous pair correlation function

An estimator of the space-time pair correlation function defined in Equation 1 is

ĝ(u, v) =
1

|S × T |

n∑
i=1

∑
j 6=i

1

wijvij

ks(u− ‖si − sj‖)kt(v − |ti − tj |)
λ(si, ti)λ(sj , tj)

,

where wij and vij are the spatial and temporal edge correction factors defined in Equation 5
and ks(·), kt(·) are kernel functions with bandwidths hs and ht. Experience with pair corre-
lation function estimation recommends box kernels, see Illian et al. (2008).

Application to FMD data

The functions STIKhat and PCFhat provide estimates of the space-time inhomogeneous K-
function and pair correlation function. The following code applies these estimators to the
FMD data under the assumption that the spatio-temporal intensity is separable. The spatial
intensity is estimated using the function kernel2d of the package splancs. Other R packages
capable of this type of estimation include spatstat and spatialkernel (Zheng and Diggle 2012).
In PCFhat the box kernel is used by default. Epanechnikov, Gaussian and biweight kernels
are also implemented. Whatever the kernel function, if the bandwidth is missing, a value is
obtain from the function dpik of the package KernSmooth (Wand and Ripley 2012). Note
that the bandwidths play an important role in determining the quality of the estimators as
they heavily influence the trade-off between bias and variance.

R> FMD <- as.3dpoints(fmd[, 1] / 1000, fmd[, 2] / 1000, fmd[,3])

R> Northcumbria <- northcumbria / 1000

R> Mt <- density(FMD[,3], n = 1000)

R> mut <- Mt$y[findInterval(FMD[,3], Mt$x)] * dim(FMD)[1]

R> h <- mse2d(as.points(FMD[,1:2]), Northcumbria, nsmse = 50, range = 4)

R> h <- h$h[which.min(h$mse)]

R> Ms <- kernel2d(as.points(FMD[,1:2]), Northcumbria, h = h, nx = 5000,

+ ny = 5000)

R> atx <- findInterval(x = FMD[,1], vec = Ms$x)

R> aty <- findInterval(x = FMD[,2], vec = Ms$y)

R> mhat <- NULL

R> for(i in 1:length(atx)) mhat <- c(mhat, Ms$z[atx[i],aty[i]])

R> u <- seq(0, 10, by = 1)

R> v <- seq(0, 15, by = 1)

R> stik <- STIKhat(xyt = FMD, s.region = Northcumbria, t.region = c(1, 200),

+ lambda = mhat * mut / dim(FMD)[1], dist = u, times = v, infectious = TRUE)

R> g <- PCFhat(xyt = FMD, lambda = mhat * mut / dim(FMD)[1], dist = 1:20,

+ times = 1:20, s.region = Northcumbria, t.region = c(1,200))

8 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

We can plot the estimates by using the functions plotK and plotPCF which provide either a
contour plot (default) or a perspective plot (when persp=TRUE).

R> plotK(stik)

R> plotPCF(g)

R> plotPCF(g, persp = TRUE, theta = -65, phi = 35)

Figure 3 shows such plots for the FMD data, where u denotes distances in kilometers and v
times in days. To assess the data for evidence of spatio-temporal clustering, we can follow

0 2 4 6 8 u
0

5

10

v
K̂ST(u, v) − πu2v

1000
800
600
400
200
0

0 2 4 6 8 10
0

2

4

6

8

10

12

14

u

v

5 10 15 u

5

10

15

v
ĝ(u, v)

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

u

v
ĝ(u, v)

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

Figure 3: Contour plot (left) and perspective plot (bottom right) of the STIK function and
(top) pair correlation function (bottom) estimated from FMD data. Comparison between
K̂(u, v)− πu2v and tolerance envelopes indicating spatio-temporal clustering in grey shading
(top right).

common practice by comparing the estimator K̂(u, v) with estimates calculated for simulations
under the null hypothesis that the underlying process is an inhomogeneous Poisson process
(see Section 3.1). We then compare the data with simulations of a Poisson process with
intensity λ̂(s, t) = m(s)µ(t). The top right panel of Figure 3 shows comparison between
K̂(u, v)− πu2v and tolerance envelopes indicating spatio-temporal clustering (grey shading).
It indicates spatio-temporal clustering at small temporal distances v < 10 days and spatial
distances u < 5 kilometers. This corresponds to the contour plot of the pair correlation

Journal of Statistical Software 9

function in Figure 3, where values greater than one indicate clustering. The FMD data-set
has been further analysed in Møller and Ghorbani (2012).

3. Models

Space-time point pattern data are increasingly available in a wide range of scientific settings.
Data-sets of this kind usually consist of a single realisation of the underlying process. Usually,
separate analyses of the spatial and the temporal components are of limited value, because
the scientific objectives of the analysis are to understand and to model the underlying spatio-
temporally interacting stochastic mechanisms. Simulation of spatio-temporal point processes
is a useful tool, both for understanding the behaviour of models and as necessary component
of Monte Carlo methods of inference. Packages that deal with spatio-temporal data include
gstat (Pebesma 2004) for geostatistical data, spacetime (Pebesma, Graeler, and Gottfried
2012) for lattice data, splancs and spatstat for point process data. However, neither splancs
nor spatstat includes functions for simulating spatio-temporal data. The lgcp package (Taylor,
Davies, Rowlingson, and Diggle 2012) does include functions for simulating log-Gaussian
Cox processes (Møller, Syversveen, and Waagepetersen 1998), but its focus is on methods of
inference within this model-class. In contrast, stpp focuses on simulation over a wide class of
models.

Models and functions are described below. All functions return a matrix xyt (or list of
matrices if the number of simulations, nsim, is greater than 1) containing the points (x, y, t)
of the simulated point pattern and s.region, t.region which are the spatial and temporal
regions passed in argument. By default, the spatio-temporal region is the unit cube. The
spatial region can be a polygon defined by a two-columns matrix in s.region. Note that xyt
(or any element of the list if nsim>1) is an object of the class ‘stpp’.

3.1. Poisson process

Homogeneous Poisson process

The homogeneous Poisson process is the simplest possible stochastic mechanism for the gener-
ation of spatio-temporal point patterns. It is rarely plausible as a model for data, but provides
a benchmark of complete spatio-temporal randomness (CSTR). Informally, in a realisation
of a homogenous Poisson process on any spatio-temporal region S × T , the events form an
independent random sample from the uniform distribution on S × T . More formally, the
homogeneous Poisson process is defined by the following postulates:

1. For some λ > 0, the number Y (S × T) of events within the region S × T follows a
Poisson distribution with mean λ|S||T |, where | · | denotes (two-dimensional) area or
(one-dimensional) length according to context.

2. Given Y (S × T) = n, the n events in S × T form an independent random sample from
the uniform distribution on S × T .

The first-order and second-order intensities of a homogeneous Poisson process reduce to con-
stants, λ(s, t) = λ and λ2

(
(si, ti), (sj , tj)

)
= λ2. Hence, as stated in Section 2.1, the covariance

10 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

density is identically zero, the pair correlation function identically 1, and the STIK function
is KST (u, v) = πu2v.

Simulation

To generate a homogeneous Poisson point pattern in S × T , stpp uses a two-step procedure:

1. Simulate the number of events n = Y (S×T) occurring in S×T according to a Poisson
distribution with mean λ|S||T |.

2. Sample each of the n locations and n times according to a uniform distribution on S
and on T respectively.

Inhomogeneous Poisson process

The inhomogeneous Poisson process is the simplest non-stationary point process. It is ob-
tained replacing the constant intensity λ of a homogeneous Poisson process by a spatially
and/or temporally varying intensity function λ(s, t). Inhomogeneous Poisson processes are
defined by the following postulates:

1. The number Y (S × T) of events within the region S × T follows a Poisson distribution
with mean

∫
S

∫
T λ(s, t) dt ds.

2. Given Y (S×T) = n, the n events in S×T form an independent random sample from the
distribution on S×T with probability density function f(s, t) = λ(s, t)/

∫
S

∫
T λ(s̃, t̃) dt̃ds̃.

For a Poisson process with intensity λ(s, t), the second-order intensity is λ2

(
(si, ti), (sj , tj)

)
=

λ(si, ti)λ(sj , tj), hence the covariance density is identically zero, the pair correlation function
identically 1, and the STIK function KST (u, v) = πu2v as in the homogeneous case.

Simulation

To generate a realisation of an inhomogeneous Poisson process in S×T , stpp uses a thinning
algorithm as follows. For a given intensity function λ(s, t):

1. Define an upper bound λmax for the intensity function λ(s, t).

2. Simulate a homogeneous Poisson process with intensity λmax.

3. “Thin” the simulated process as follows,

(a) Compute p = λ(s, t)/λmax for each point (s, t) of the homogeneous Poisson process.

(b) Generate a sample u from the uniform distribution on (0, 1).

(c) Retain the locations for which u ≤ p.

Examples

Poisson processes are simulated by the function rpp. Realisations are simulated in a region
S × T , where S is a polygon and T is an interval, with default the unit cube. For a homoge-
neous Poisson process, the intensity is specified by a constant. For example, the sequence of
commands

Journal of Statistical Software 11

R> hpp1 <- rpp(lambda = 200, nsim = 5, replace = FALSE)

R> stan(hpp1$xyt[[2]])

generates five realisations of the Poisson process with intensity λ = 200 in the unit cube and
displays the second realisation dynamically.

The sequence of commands

R> data("northcumbria")

R> hpp2 <- rpp(npoints = 1000, s.region = northcumbria, t.region = c(1, 500),

+ discrete.time = TRUE)

R> animation(hpp2$xyt, s.region = hpp2$s.region)

generates and displays a realisation of the Poisson process with intensity λ = 1000/(|S||T |),
but conditioned to produce exactly 1000 points in the region S × T , where S is the county of
Cumbria and T = [1, 500]. The argument npoints specifies the fixed value of the number of
events to be generated. Simulated times are restricted to integers (set by the discrete.time

parameter), and coincident times are allowed (set by the replace argument).

Figure 4 illustrates through a static display realisations of “hpp1” (left) and “hpp2” (right)
defined above. Here, time is treated as a quantitative mark; light grey/small dots correspond
to the oldest events and dark grey/large dots correspond to the most recent events. In
the following, we shall use such plot to illustrate the realisations of spatio-temporal point
processes.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

300000 340000 380000

480000

500000

520000

540000

560000

580000

x

y

Figure 4: Realisations of the homogeneous Poisson processes “hpp1” (left) and “hpp2” (right)
defined in examples.

The function rpp can also generate realisations of inhomogeneous Poisson processes. The
intensity is then specified either by a function of the coordinates and times, λ(x, y, t, ...), or
by a three dimensional array. For example, the sequence of commands

R> lbda1 <- function(x, y, t, a){a * exp(-4 * y) * exp(-2 * t)}

R> ipp1 <- rpp(lambda = lbda1, npoints = 200,

+ a = 1600 / ((1 - exp(-4)) * (1 - exp(-2))))

R> stan(ipp1$xyt)

12 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

generates 200 points of the Poisson process with intensity λ(x, y, t) = ae−4y−2t in the unit
cube. The constant a = 1600/{(1 − e−4)(1 − e−2)} ensures that the mean number of points
is 200. When the npoints argument is omitted, the number of points is not fixed by the user
but is generated by a Poisson distribution with mean

∫∫
S

∫
T λ(x, y, t, ...) dtdx dy. Realisations

can also be generated when the intensity is specified by a spatio-temporal intensity array.
In the following example, we estimate the spatial and temporal intensities of the fmd data
by kernel smoothing (Silverman 1986; Berman and Diggle 1989) and display the realisation
superimposed on a grey-scale image of the spatial intensity estimate. Figure 5 illustrates
the estimate of the spatial (left) and temporal (right) intensity functions. Dark/light grey
correspond to high/weak values of the spatial intensity.

300000 340000 380000

480000

500000

520000

540000

560000

580000

0 50 100 150 200

0

5

10

15

time (days)

Figure 5: Spatial (left) and temporal (right) intensity functions estimated from the fmd data-
set.

R> data("fmd")

R> data("northcumbria")

R> h <- mse2d(as.points(fmd[, 1:2]), northcumbria, nsmse = 30, range = 3000)

R> h <- h$h[which.min(h$mse)]

R> Ls <- kernel2d(as.points(fmd[, 1:2]), northcumbria, h, nx = 100, ny = 100)

R> Lt <- dim(fmd)[1] * density(fmd[, 3], n = 200)$y

R> Lst <- array(0, dim = c(100, 100, 200))

R> for(k in 1:200) Lst[,,k] <- Ls$z * Lt[k] / dim(fmd)[1]

R> ipp2 <- rpp(lambda = Lst, s.region = northcumbria, t.region = c(1, 200),

+ discrete.time = TRUE)

R> image(Lsx, Lsy, Ls$z, col = grey((1000:1) / 1000))

R> polygon(northcumbria)

R> animation(ipp2$xyt, add = TRUE, cex = 0.5, runtime = 15)

Figure 6 illustrates realisations of “ipp1” (left) and “ipp2” (right) defined above.

3.2. Poisson cluster process

We define a spatio-temporal Poisson cluster process as the following direct generalization of
its spatial counterpart (Neyman and Scott 1958).

Journal of Statistical Software 13

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

x

y

300000 340000 380000

480000

500000

520000

540000

560000

580000

x

y

Figure 6: Realisations of the inhomogeneous Poisson processes“ipp1”(left) and“ipp2”(right)
defined in examples.

1. Parents form a Poisson process with intensity λp(s, t).

2. The number of offspring per parent is a random variable Nc with mean mc, realised
independently for each parent.

3. The positions and times of the offspring relative to their parents are independently
and identically distributed according to a trivariate probability density function f(·) on
R2 × R+.

4. The final process is composed of the superposition of the offspring only.

Simulation

To generate a Poisson cluster point process in S×T we use the following three-step procedure:

1. Simulate a Poisson process of parent points with intensity λp(s, t) in S′ × T ′, where
S′ ⊃ S and T ′ ⊂ T so as to avoid, or at least minimise, edge-effects that would otherwise
result from the loss of offspring from parents close to the boundary of S and T .

2. For each simulated parent, generate a random number nc of offspring from a Poisson
distribution with mean mc.

3. Generate the spatio-temporal displacements of the offspring from their parents as inde-
pendent realisations from the trivariate distribution with density f(·).

Examples

The function rpcp generates points around a number of parents points generated by rpp.
Their spatial and temporal distributions can be chosen among “uniform”, “normal” and “ex-
ponential” using the cluster argument. This can be either a single value if the distribution
in space and time is the same, or a vector of length two, giving first the spatial distribu-
tion of offspring relative to their parents and then the temporal distribution. The parameter
dispersion is a scale parameter, equals to twice the standard deviation of location of children

14 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

relative to their parents for a normal distribution of children, the mean for an exponential dis-
tribution and half the range for a uniform distribution. By default, edge = "larger.region".
The function generates the Poisson cluster process within a larger region but return only those
points that fall within S × T . If edge = "without" the process is generated only in S × T
and will have an artificially reduced intensity near the boundary of S. By default, the larger
spatial region is the convex hull of s.region enlarged by the spatial element of dispersion
and the larger time interval is t.region enlarged by the temporal element of dispersion.
The user can over-ride the default using the two-element vector argument larger.region.

In the following example, parents are generated by a homogeneous spatio-temporal Poisson
process with intensity λ = np/(|S||T |), where S is the boundary of Cumbria, T = [1, 365] and
np = 50 is the number of parents. Each parent gives birth to a series of offspring; the number
of offspring per parent follows a Poisson distribution with mean mc.

R> data("northcumbria")

R> pcp1 <- rpcp(nparents = 50, mc = 10, s.region = northcumbria,

+ t.region = c(1, 365), cluster = c("normal", "exponential"),

+ dispersion = c(5000, 5))

R> animation(pcp1$xyt, s.region = pcp1$s.region, t.region = pcp1$t.region,

+ runtime = 5)

The sequence of commands

R> lbda <- function(x, y, t, a){a * exp(-4 * y) * exp(-2 * t)}

R> pcp2 <- rpcp(nparents = 50, npoints = 250, cluster = "normal",

+ lambda = lbda, a = 2000 / ((1 - exp(-4)) * (1 - exp(-2))))

R> stan(pcp2$xyt)

generates a realisation of the Poisson cluster process in the unit cube and displays the realisa-
tion. Here, the parent process is Poisson with intensity λ(x, y, t) = ae−4y−2t and the offspring
are normally dispersed both in space and in time. The constant a = 2000/{(1−e−4)(1−e−2)}
has been chosen so that the mean number of points is 250. Figure 7 illustrates realisations of
“pcp1” (left) and “pcp2” (right) defined above.

3.3. Interaction processes

Inhibition process

Inhibition processes either prevent (strict inhibition) or make unlikely the occurrence of pairs
of close events, resulting in patterns that are more regular in space and/or in time than a
Poisson process of the same intensity.

In a spatial simple sequential inhibition process (strict inhibition), let δs denote the minimum
permissible distance between events and λs the spatial intensity of the process. The proportion
of the plane covered by non-overlapping discs of radius δs/2 is ρ = λsπδ

2
s/4, which we call

the packing density. The maximum achieveable packing density is for a pattern of points
in a regular triangular lattice at spacing δs, for which ρ =

√
3/2 ≈ 0.87. Depending on

exactly how the points are generated, even this value of δs may not be feasible; for example,

Journal of Statistical Software 15

300000 340000 380000

480000

500000

520000

540000

560000

580000

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 7: Realisations of the Poisson cluster processes “pcp1” (left) and “pcp2” (right) defined
in examples.

if the points are placed sequentially at random in a large region S, the maximum achieveable
packing density is approximately 0.55 (Tanemura 1979).

Simple sequential inhibition processes in space and time are defined by the following algorithm.
Consider a sequence of m events (si, ti) in S × T . Then,

1. s1 and t1 are uniformly distributed in S and T respectively.

2. At the kth step of the algorithm, k = 2, ...,m, sk is uniformly distributed on the inter-
section of S with {s : ‖s− sj‖ ≥ δs, j = 1, . . . , k − 1} and tk is uniformly distributed on
the intersection of T with {t : |t− tj | ≥ δt, j = 1, . . . , k − 1}.

To obtain a larger class of inhibition processes than the one defined above, we extend condition
2. of the above algorithmic definition by introducing functions ps(u) and pt(v) that together
determine the probability that a potential point at location s and time t will be accepted as a
point of the process, according to the following algorithm, in which the functions gs(·), gt(·),
hs(·), ht(·) and the parameter r are to be defined.

1. s1 and t1 are uniformly distributed in S and T respectively.

2. At the kth step of the algorithm, k = 2, ...,m,

(a) Generate uniformly a location s ∈ S and a time t ∈ T .

(b) Generate us ∼ U [0, 1] and ut ∼ U [0, 1].

(c) If ‖s− sj‖ ≥ δs for all j = 1, . . . , k − 1, then set ps = 1.

Otherwise compute ps = gs (hs ((‖s− sj‖)j=1,...,k−1, θs, δs) , r).

(d) If |t− tj | ≥ δt for all j = 1, . . . , k − 1, then set pt = 1.

Otherwise compute pt = gt (ht ((|t− tj |)j=1,...,k−1, θt, δt) , r).

(e) If us < ps and ut < pt, then keep s and t.

Within the stpp package, the functions gs and gt can be chosen among “min”, “max” and
“prod”. This allows us to consider either the minimum or the maximum or the product

16 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Inhibition functions implemented in rinter; left: step, δ = 4, θ = 0.3; right:
Gaussian, δ = 2, θ = 9.

of terms hs(·) and ht(·) from all previous events or only the r most recent in time (set by
recent argument). For example, setting gs =“prod” and r ≤ k − 1, at the kth step of the
algorithm, the probability of acceptance is ps =

∏k−1
j=k−r hs (‖s− sj‖, θs, δs). The functions hs

and ht define the nature of the interaction between a pair of points according to their spatial
and temporal separations, respectively. In the following, h(·) and δ without subscripts can
represent either hs(·) or ht(·) and δs or δt. The function h(·) is monotone, increasing, tends
to 1 when the separation tends to infinity and satisfies 0 ≤ h(·) ≤ 1. Currently the following
functions are implemented in stpp:

� step: h(x) =

{
1, if x > δ
θ, otherwise

, θ ∈ [0, 1].

� Gaussian: h(x) =

1, if x > δ + θ/2

exp
{
− (x−δ−θ/2)2

2(θ/8)2

}
, if δ < x ≤ δ + θ/2

0, if x ≤ δ
, θ ≥ 0.

One distinction between these two functions is that the ‘step’ function allows points to be
generated at distances less or equal to δ if θ > 0, whereas the ‘Gaussian’ function does not.
Figure 8 gives an example of each.

Contagious process

A simple contagious processes in space and time can be defined algorithmically as follows.
Consider a sequence of m events (si, ti) in S × T . Then,

1. s1 and t1 are uniformly distributed in S and T respectively.

2. At the kth step of the algorithm, given {(sj , tj), j = 1, . . . , k − 1}, sk is uniformly dis-
tributed on the intersection of S and the circle of center sk−1 and radius δs, whilst tk is
uniformly distributed on the intersection of T and the segment [tk−1, tk−1 + δt].

As in the case of inhibitory processes, we enlarge the class of contagious processes by intro-
ducing functions ps and pt, which depend on ‖s− sj‖ and |t− tj | respectively. The kth step
of this algorithm is

1. Generate uniformly a location s ∈ S and a time t ∈ T .

Journal of Statistical Software 17

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Contagious functions implemented in rinter; left: step, δ = 4, θ = 0.3; right:
Gaussian, δ = 2, θ = 9.

2. Generate us ∼ U [0, 1] and ut ∼ U [0, 1].

3. If ‖s− sj‖ < δs for all j = 1, . . . , k − 1, then set ps = 1.

Otherwise compute ps = gs (hs ((‖s− sj‖)j=1,...,k−1, θs, δs) , r).

4. If |t− tj | < δt for all j = 1, . . . , k − 1, then set pt = 1.

Otherwise compute pt = gt (ht ((|t− tj |)j=1,...,k−1, θt, δt) , r).

5. If us < ps and ut < pt, then keep s and t.

The g and h functions have the same interpretation as for inhibitory processes. The same
set of three g functions is currently implemented, whilst the two implemented h functions are
analogous to their inhibitory counterparts:

� step: h(x) =

{
1, if x ≤ δ
θ, otherwise

, θ ∈ [0, 1].

� Gaussian: h(x) =

{
1, if x ≤ δ
exp

{
− (x−δ)2

2(θ/8)2

}
, otherwise

, θ ≥ 0.

Figure 9 gives an example of each.

Examples

The function rinter generates both inhibitory and contagious processes, differentiated by
the parameter inhibition. The parameter recent allows the user to consider either all or
only the r most recent events.

The simple sequential inhibition process is obtained by choosing “min” for both g functions,
“step” for both h functions and 0 for the θ parameter. The commands

R> inh1 <- rinter(npoints = 200, thetas = 0, deltas = 0.05, thetat = 0,

+ deltat = 0.001, inhibition = TRUE)

R> stan(inh1$xyt)

generate one realisation of this process in the unit cube and display the realisation.

Similarly, the commands

18 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

R> data("northcumbria")

R> cont1 <- rinter(npoints = 250, s.region = northcumbria,

+ t.region = c(1, 200), thetas = 0, deltas = 7500, thetat = 0, deltat = 10,

+ recent = 1, inhibition = FALSE)

R> plot(cont1$xyt, pch = 19, s.region = cont1$s.region, mark = TRUE,

+ mark.col = 4)

R> animation(cont1$xyt, s.region = cont1$s.region, t.region = cont1$t.region,

+ incident = "red", prevalent = "lightgreen", runtime = 15, cex = 0.8)

generate one realisation of the simple contagious process in a prescribed, irregular spatio-
temporal region and display the realisation.

The simple contagious process is similarly specified by using ”step” for both h functions, 0 for
the θ parameter and r = 1.

The user can also call their own functions hs and ht, which can combine inhibitory and conta-
gious elements provided that the functions only depend on d (spatial or temporal separation
between two points) and two parameters, θ and δ. Whilst the user is allowed to define their
own functions, he has to remind that all conditions on h(·) must be satisfied: h(·) is monotone,
increasing, tends to 1 when d tends to infinity and satisfies 0 ≤ h(·) ≤ 1. This is illustrated
in the following example, with hs(·) and ht(·) plotted in the bottom left panel of Figure 10.

R> hs <- function(d, theta, delta, mus = 0.1){

+ res <- NULL

+ a <- (1 - theta) / mus

+ b <- theta - a * delta

+ for(i in 1:length(d))

+ {

+ if (d[i] <= delta) res <- c(res, theta)

+ if (d[i] > (delta + mus)) res <- c(res, 1)

+ if (d[i] > delta & d[i] <= (delta + mus)) res <- c(res, a * d[i] + b)

+ }

+ return(res)}

R> ht <- function(d, theta, delta, mut = 0.3){

+ res <- NULL

+ a <- (1 - theta) / mut

+ b <- theta - a * delta

+ for(i in 1:length(d))

+ {

+ if (d[i] <= delta) res <- c(res, theta)

+ if (d[i] > (delta + mut)) res <- c(res, 1)

+ if (d[i] > delta & d[i] <= (delta + mut)) res <- c(res, a * d[i] + b)

+ }

+ return(res)}

R> d <- seq(0, 1, length = 100)

R> plot(d, hs(d, 0.2, 0.1, 0.1), xlab = "", ylab = "", type = "l",

+ ylim = c(0,1), lwd = 2, las = 1)

Journal of Statistical Software 19

R> lines(d, ht(d, 0.1, 0.05, 0.3), col = 2, lwd = 2)

R> legend("bottomright", col = 1:2, lty = 1, lwd = 2, bty = "n", cex = 2,

+ legend = c(expression(h[s]), expression(h[t])))

R> inh2 <- rinter(npoints = 100, hs = hs, gs = "min", thetas = 0.2,

+ deltas = 0.1, ht = ht, gt = "min", thetat = 0.1, deltat = 0.05,

+ inhibition = TRUE)

R> animation(inh2$xyt, runtime = 15, cex = 0.8)

Figure 10 illustrates realisations of the interaction processes: simple inhibition process (top
left), contagious process (top right), inhibition process with interaction functions defined by
the user (bottom right).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

300000 340000 380000

480000

500000

520000

540000

560000

580000

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

hs
ht

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 10: Realisations of the interaction processes “inh1” (top left), “cont1” (top right) and
“inh2” (bottom right) with interaction function defined by the user (bottom left).

3.4. Infectious processes

The difference between an infectious and a contagious disease is that the former can be
contracted by a person without their having come into direct contact with an infected person,
whilst the latter is transmitted only by direct contact. All contagious diseases are infectious,
but many infectious diseases are not contagious. Here, we use the term contagious process
to mean that the existence of a point of the process at location s and time t increases the

20 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

likelihood of there being additional points of the process close to (s, t) in both space and time.
We use the term infectious process in a narrower sense, whereby to each infected individual
at a time t there corresponds an infection rate h(t), which we here assume depends on three
parameters: a latent period α, the maximum infection rate β and the infection period γ.
Note that an infectious process in this sense may exhibit a combination of contagious and
inhibitory properties. Diggle, Kaimi, and Abellana (2010) give an example of such a process
to describe the pattern of colonisation of a nesting ground, in which each new arrival tends
to choose a nesting location close to established nests, but not so close as to invade their
established territories.

We define an infectious process in space and time as follows. Consider a sequence of m events
{(si, ti), i = 1, . . . ,m} in S × T . Then,

1. Choose the location s1 and time t1 of the first event.

2. Given {(sj , tj), j = 1, . . . , k − 1}, sk is either radially symmetrically distributed around
sk−1 or is a point in a Poisson process with intensity λ(s), and tk is either uniformly or
exponentially distributed from tk−1. We denote by fs and ft the distribution of sk and
tk relative to sk−1 and tk−1, respectively.

Simulation

The algorithm used in the stpp package to simulate an infectious processes is as follows.

Step 1

1. Set (s1, t1).

Step k = 2, 3, ...

2. Compute hk(t) = h(t|tk−1, α, β, γ)/{
∫
T h(u) du} and µk(t) =

∑k
j=1 hj(t).

3. Generate uk ∼ U [0, 1].

4. Generate tk = tk−1 + v and sk = sk−1 + w, where v and w are generated from ft and
fs, respectively.

5. If

{
‖sk − sj‖ ≥ δs, for an inhibition process
‖sk − sj‖ < δs, for a contagious process

, j = 1, . . . , k − 1 , then set pk = 1.

Otherwise, compute pk = g
(
{µj(t1, . . . , tj)/maxj µj(t1, . . . , tj)}j=1,...,k , r

)
.

6. If uk < pk, then keep (sk, tk). Otherwise, generate another candidate.

As before, the function g can be chosen amongst “min”, “max” and “prod” and is computed
from either all previous events or the r most recent in time. The spatial distribution fs can
be chosen among:

� uniform: sk = (xk, yk), where xk = xk−1 + U [−ds, ds] and yk = yk−1 + U [−ds, ds].

� Gaussian: sk = (xk, yk), where xk = xk−1 +N (0, ds/2) and yk = yk−1 +N (0, ds/2).

� exponential: sk = (xk, yk), where xk = xk−1 ± Exp(1/ds) and yk = yk−1 ± Exp(1/ds).

Journal of Statistical Software 21

0 2 4 6 8 10

0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10

0

1

2

3

4

Figure 11: Illustration of µk(t) for h as a step function (left) and a Gaussian function (right).
Solid dots indicate the times of points of the process.

� Poisson: sk a point in a Poisson process with intensity λ(s).

The temporal distribution ft can be chosen among:

� uniform: tk = tk−1 + U [0, dt].

� exponential: tk = tk−1 + Exp(1/dt).

The infection rate h depends on tk−1, the latent period α, the maximum infection rate β ∈
[0, 1] and the infection period γ. The options currently implemented are:

� step: h(t) =

{
β, if tk−1 + α ≤ t ≤ tk−1 + α+ γ
0, otherwise

,

tk−1

α

γ

β

� Gaussian: h(t) = β exp
{
−
(
t− (tk−1 + α+ γ/2)

)2
/2(γ/8)2

}
.

tk−1

α

γ

β

Figure 11 illustrates µk(t) for h as a step function (left) or a Gaussian function (right), with
α = 0.2, β = 0.7 and γ = 2 in each case. Dots correspond to the times of events.

Examples

The function rinfec generates infectious processes defined by an infection rate function
h(α, β, γ) (arguments h, alpha, beta and gamma) and inhibition or contagious processes (dif-
ferentiated by the argument inhibition). Spatial and temporal distribution are specified

22 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

through the arguments s.distr, t.distr and maxrad, where maxrad is a two-element vector
defining the spatial and temporal dispersions, respectively. The spatial distribution can be
specified as uniform, "gaussian", "exponential" or "poisson", and the temporal distri-
bution as "uniform" or "exponential". The probability of acceptance of a new point is
computed by a function g(·, r) specified as one of "min", "max" or "prod". The argument
recent allows the user to consider either all or only the r most recent events.

The sequence of commands

R> inf1 <- rinfec(npoints = 100, alpha = 0.1, beta = 0.6, gamma = 0.5,

+ maxrad = c(0.075, 0.5), t.region = c(0, 50), s.distr = "uniform",

+ t.distr = "uniform", h = "step", g = "min", recent = "all",

+ inhibition = TRUE)

R> animation(inf1$xyt, cex = 0.8, runtime = 10)

generates one realisation of an infectious/inhibitory process and displays the realisation over
the spatial intensity estimate.

When the spatial distribution is specified as "poisson", its intensity can be defined by a
function λ(x, y, t, ...) or by a matrix representing the values of λ(x, y) assumed constant over
time. The following example illustrates the case of an intensity defined by a matrix, here
corresponding to a kernel estimate of the spatial intensity of the fmd data-set. The commands

R> data("fmd")

R> data("northcumbria")

R> h <- mse2d(as.points(fmd[, 1:2]), northcumbria, nsmse = 30, range = 3000)

R> h <- h$h[which.min(h$mse)]

R> Ls <- kernel2d(as.points(fmd[, 1:2]), northcumbria, h, nx = 50, ny = 50)

R> inf2 <- rinfec(npoints = 100, alpha = 4, beta = 0.6, gamma = 20,

+ maxrad = c(12000, 20), s.region = northcumbria, t.region = c(1, 2000),

+ s.distr = "poisson", t.distr = "uniform", h = "step", g = "min",

+ recent = 1, lambda = Ls$z, inhibition = FALSE)

R> image(Lsx, Lsy, Ls$z, col = grey((1000:1) / 1000))

R> polygon(northcumbria, lwd = 2)

R> animation(inf2$xyt, add = TRUE, cex = 0.7, runtime = 15)

generate one realisation of an infectious/contagious process in a given space-time region and
display the realisation. Figure 12 illustrate realisations of the infectious processes“inf1”(left)
and “inf2” (right) defined above.

3.5. Log-Gaussian Cox processes

A Cox process is a doubly stochastic point process formed as an inhomogeneous Poisson
process with a stochastic intensity. Such processes were introduced by Cox (1955) in one
temporal dimension. Their definition in space and time is:

1. {Λ(s, t) : s ∈ S, t ∈ T} is a non-negative-valued stochastic process.

2. Conditional on {Λ(s, t) = λ(s, t) : s ∈ S, t ∈ T}, the events form an inhomogeneous Pois-
son process with intensity λ(s, t).

Journal of Statistical Software 23

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

300000 340000 380000

480000

500000

520000

540000

560000

580000

x

y

Figure 12: Realisations of the interaction processes “inf1” (left) and “inf2” (right) defined
in examples.

Suppose that Z = {Z(s, t); s ∈ S, t ∈ T} is a real-valued Gaussian process with mean µ(s, t) =
E [Z(s, t)] and covariance function c

(
(si, ti), (sj , tj)

)
= Cov

(
Z(si, ti), Z(sj , tj)

)
. If the inten-

sity function is defined by Λ(s, t) = exp {Z(s, t)}, then the corresponding process Y is a
Log-Gaussian Cox process (Brix and Diggle 2001; Møller et al. 1998).

Simulation

The simulation of a log-Gaussian Cox process in the stpp package uses the same thinning
algorithm as was used for an inhomogeneous Poisson process, but preceded by a simulation
of the underlying Gaussian process. For a given covariance function c

(
(si, ti), (sj , tj)

)
and a

given mean µ(s, t) for the Gaussian process the algorithm is as follows.

1. Generate a realisation of a Gaussian field, with covariance function c
(
(si, ti), (sj , tj)

)
and mean µ(s, t).

2. Define λ(s, t) = exp {Z(s, t)} and an upper bound λmax for λ(s, t).

3. Simulate a homogeneous Poisson process with intensity λmax; denote by N the number
of points so generated.

4. Thin the simulated process as follows,

(a) Compute p = λ(s, t)/λmax for each point (s, t) of the homogeneous Poisson process.

(b) Generate a sample u of size N from the uniform distribution on (0, 1).

(c) Retain the n ≤ N locations for which u ≤ p.

The stpp package implements an exact simulation of a stationary Gaussian random field on
a n1 × n2 × n3 grid, based on circulant embedding of the covariance function (Chan and
Wood 1997). See e.g., Appendix E in Møller and Waagepetersen (2003) for the simulation of
Gaussian random fields.

In stpp, we have implemented separable, stationary covariance functions of the form

c(h, t) = cs(h)ct(t), h ∈ S, t ∈ T, (6)

24 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

where cs(h) and ct(t) are purely spatial and purely temporal covariance functions, respectively.
All models are isotropic cs(h) = c(‖h‖) or ct(t) = c(|t|); they include the Matérn class, the
Cauchy class and the wave class (see Table 1). Note that the Matérn covariance is defined in
terms of the modified Bessel function Kν .

Class Functional form

Exponential c(r) = σ2 exp(−r), σ ≥ 0

Stable c(r) = σ2 exp(−rα), α ∈ [0, 2], σ ≥ 0

Matérn c(r) = σ2 (αr)ν

2ν−1Γ(ν)
Kν(αr), ν > 0, α > 0, σ ≥ 0

Cauchy c(r) = σ2(1 + r2)−α, α > 0, σ ≥ 0

Wave c(r) = σ2 sin(r)
r if r > 0, c(0) = 1, σ ≥ 0

Table 1: Some classes of isotropic covariance functions.

We have also implemented non-separable covariance functions of the form

c(h, t) = ψ(t)−α6φ

(
h

ψ(t)

)
, (7)

where φ(r), r ≥ 0 is a completely monotone function depending on parameters α1 and α2

and ψ(r), r ≥ 0 is a positive function with a completely monotone derivative, depending on
parameters α1, α2 and α3. The model therefore depends on six parameters α1 to α6. The
implemented choices for the function φ are:

� the stable model φ(r) = exp(−rα1), if α2 = 1,

� the Cauchy model φ(r) = (1 + r2)−α1 , if α2 = 2.

The implemented choices for the function ψ are:

� ψ2(r) = (rα3 + 1)α4 , if α5 = 1,

� ψ2(r) = (α−1
4 rα3 + 1)/(rα3 + 1), if α5 = 2,

� ψ2(r) = − log(rα3 + 1/α4)/ logα4, if α5 = 3

The permissible ranges of the parameters of (7) are given in Table 2. See Gneiting, Genton,
and Guttorp (2007) and references therein for details on these parameters.

Another non-separable covariance function is the de Cesare covariance function (De Cesare,
Myers, and Posa 2001; De Iaco, Myers, and Posa 2002) defined by

c(h, t) = (1 + hα1 + tα2)α3 ,

where α1, α2 ∈ [1, 2] and α3 ≥ 3/2.

Examples

The function rlgcp generates realisations of a log-Gaussian Cox process. The covariance
of the Gaussian process may be separable or not, as specified by the argument separable.

Journal of Statistical Software 25

α1 α2 α3 α4 α5 α6

[0, 2] 1 (0, 2] (0, 1] 1 [2,∞)
(0,∞) 2 (0, 2] (0, 1] 1 [2,∞)

[0, 2] 1 (0, 2] (0, 1] 2 [2,∞)
(0,∞) 2 (0, 2] (0, 1] 2 [2,∞)

[0, 2] 1 (0, 2] (0, 1] 3 [2,∞)
(0,∞) 2 (0, 2] (0, 1] 3 [2,∞)

Table 2: Permissible ranges of the parameters defining the Gneiting model (7).

The argument model is a vector of length 1 or 2 specifying the covariance model(s) for the
Gaussian random field. If separable = TRUE and model is of length 2, then the elements of
model define the spatial and temporal covariances, respectively. When separable = TRUE

and model is of length 1, the spatial and temporal covariances are assumed to belong to
the same class of covariances, choices for which are "matern", "exponential", "stable",
"cauchy" and "wave".

When separable = FALSE, model must be of length 1 and must be either "gneiting" or
"cesare". In all cases, parameters of the covariance models are specified by the vector
argument param, whilst the mean and variance of the Gaussian process are specified through
the arguments mean.grf and var.grf.

The thinning algorithm used to generate the space-time pattern depends on the space-time
intensity Λ(x, y, t), which is a evaluated on a nx×ny×nt grid. The larger the grid size, the
slower are the simulations. Simulation time is also longer when the argument exact takes
the value TRUE, providing an exact simulation rather than an approximation; see Chan and
Wood (1999) for details about the exact and approximate procedures.

The sequence of commands

R> lgcp1 <- rlgcp(npoints = 200, nx = 50, ny = 50, nt = 50, separable = FALSE,

+ model = "gneiting", param = c(1, 1, 1, 1, 1, 2), var.grf = 1, mean.grf = 0)

R> N <- lgcp1$Lambda[,,1]

R> for(j in 2:(dim(lgcp1$Lambda)[3])){N <- N + lgcp1$Lambda[, , j]}

R> image(N, col = grey((1000:1) / 1000)) ; box()

R> animation(lgcp1$xyt, cex = 0.8, runtime = 10, add = TRUE,

+ prevalent = "orange")

R> lgcp2 <- rlgcp(npoints = 200, nx = 50, ny = 50, nt = 50, separable = TRUE,

+ model = "exponential", param = c(1, 1, 1, 1, 1, 2), var.grf = 2,

+ mean.grf = -0.5 * 2)

R> N <- lgcp2$Lambda[, , 1]

R> for(j in 2:(dim(lgcp2$Lambda)[3])){N <- N + lgcp2$Lambda[, , j]}

R> image(N, col = grey((1000:1) / 1000)) ; box()

R> animation(lgcp2$xyt, cex = 0.8, runtime = 10, add = TRUE,

+ prevalent = "orange")

generates a realisation of each of two log-Gaussian Cox processes, one with a non-seperable
and one with a separable covariance structure, and displays the realisations superimposed on
a grey-scale image of the spatial intensity.

26 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

Figure 13 illustrates spatial intensities (left) and realisations (right) of the log-Gaussian Cox
processes “lgcp1” (top) and “lgcp2” (bottom) defined above.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 13: Spatial intensities (left) and realisations (right) of the log-Gaussian Cox processes
“lgcp1” (top) and “lgcp2” (bottom) defined in examples.

References

Adler D, Murdoch D (2012). rgl: 3D Visualization Device System (OpenGL). URL http:

//rgl.neoscientists.org.

Baddeley A, Møller J, Waagepetersen R (2000). “Non- and Semi-parametric Estimation of
Interaction in Inhomogeneous Point Patterns.” Statistica Neerlandica, 54(3), 329–350.

Baddeley A, Turner R (2005). “Spatstat: An R Package for Analyzing Spatial Point Patterns.”
Journal of Statistical Software, 12(6), 1–42.

Berman M, Diggle P (1989). “Estimating Weighted Integrals of the Second-Order Intensity
of a Spatial Point Process.” Journal of the Royal Statistical Society B, 51, 81–92.

Bowman A, Gibson L, Scott M, Crawford E (2010). “Interactive Teaching Tools for Spatial
Sampling.” Journal of Statistical Software, 36(13), 1–17.

http://rgl.neoscientists.org
http://rgl.neoscientists.org

Journal of Statistical Software 27

Brix A, Diggle P (2001). “Spatiotemporal Prediction for Log-Gaussian Cox Processes.” Jour-
nal of the Royal Statistical Society B, 63(4), 823–841.

Chan G, Wood A (1997). “Algorithm AS 312: An Algorithm for Simulating Stationary
Gaussian Random Fields.” Journal of the Royal Statistical Society C, 46, 171–181.

Chan G, Wood A (1999). “Simulation of Stationary Gaussian Vector Fields.” Statistics and
Computing, 9, 265–268.

Cox D (1955). “Some Statistical Methods Connected with Series of Events.” Journal of the
Royal Statistical Society B, 17(2), 129–164.

Cox D, Isham V (1980). Point processes. Chapman and Hall/CRC, London.

Cressie N (1993). Statistics for Spatial Data. Revised edition. John Wiley & Sons, New York.

Cressie N, Wikle C (2011). Statistics for Spatio-Temporal Data. 1st edition. John Wiley &
Sons, New York.

Daley D, Vere-Jones D (2003). An Introduction to the Theory of Point Processes. Vol. I.
Probability and its Applications, 2d edition. Springer-Verlag, New York.

De Cesare L, Myers D, Posa D (2001). “Estimating and Modeling Space-Time Correlation
Structures.” Statistics and Probability Letters, 51(1), 9–14.

De Iaco S, Myers D, Posa D (2002). “Nonseparable Space-Time Covariance Models: Some
Parametric Families.” Mathematical Geology, 34(1), 23–42.

Diggle P (2003). Statistical Analysis of Spatial Point Patterns. 2nd edition. Edward Arnold,
London.

Diggle P (2006). “Spatio-Temporal Point Processes: Methods and Applications.” In B Finken-
stadt, L Held, V Isham (eds.), Statistical Methods for Spatio-Temporal Systems, Mono-
graphs on Statistics and Applied Probability, pp. 1–45. Chapman and Hall/CRC, London.

Diggle P, Gabriel E (2010). “Spatio-Temporal Point Processes.” In A Gelfand, P Dig-
gle, M Fuentes, G P (eds.), Handbook of Spatial Statistics, pp. 449–461. Chapman and
Hall/CRC, London.

Diggle P, Kaimi I, Abellana R (2010). “Partial Likelihood Analysis of Spatio-Temporal Point
Process Data.” Biometrics, 66, 347–354.

Gabriel E (2012). “Estimating Second-Order Characteristics of Inhomogeneous Spatio-
Temporal Point Processes: Influence of Edge Correction Methods and Intensity Estimates.”
Submitted.

Gabriel E, Diggle P (2009). “Second-Order Analysis of Inhomogeneous Spatio-Temporal Point
Process Data.” Statistica Neerlandica, 63(1), 43–51.

Gneiting T, Genton M, Guttorp P (2007). “Geostatistical Space-Time Models, Stationarity,
Separability and Full Symmetry.” In B Finkenstadt, L Held, V Isham (eds.), Statistical
Methods for Spatio-Temporal Systems, pp. 151–175. Chapman and Hall/CRC, Boca Raton.

28 stpp: Plotting, Simulating and Analysing Spatio-Temporal Point Patterns

Illian J, Penttinen A, Stoyan H, Stoyan D (2008). Statistical Analysis and Modelling of Spatial
Point Patterns. John Wiley & Sons, London.

Keeling M, Woolhouse M, Shaw D, Matthews L, Chase-Topping M, Haydon D, Cornell S,
Kappey J, Wilesmith J, Grenfell B (2001). “Dynamics of the 2001 UK Foot and Mouth
Epidemic: Stochastic Dispersal in a Heterogeneous Landscape.” Science, 294, 813–817.

Møller J, Ghorbani M (2012). “Aspects of Second-Order Analysis of Structured Inhomoge-
neous Spatio-Temporal Point Processes.” Statistica Neerlandica, 66(4), 472–491.

Møller J, Syversveen A, Waagepetersen R (1998). “Log Gaussian Cox Processes.” Scandina-
vian Journal of Statistics, 25(3).

Møller J, Waagepetersen R (2003). Statistical Inference and Simulation for Spatial Point
Processes. Monographs on Statistics and Applied Probability. Chapman and Hall/CRC,
London.

Neyman J, Scott E (1958). “Statistical Approach to Problems of Cosmology (with discussion).”
Journal of the Royal Statistical Society B, 20, 1–43.

Pebesma E (2004). “Multivariable Geostatistics in S: the gstat Package.” Computers &
Geosciences, 30, 683–691.

Pebesma E, Graeler B, Gottfried T (2012). spacetime: Classes and Methods for Spatio-
Temporal Data. URL http://cran.r-project.org/.

R Development Core Team (2012). “R: A Language and Environment for Statistical Com-
puting.” R Foundation for Statistical Computing Vienna Austria. URL http://www.

r-project.org.

Rowlingson B, Diggle P (1993). “Splancs: Spatial Point Pattern Analysis Code in S-Plus.”
Computers and Geosciences, 19(5), 627–655.

Silverman B (1986). Density Estimation for Statistics and Data Analysis. Chapman and
Hall/CRC, London.

Tanemura M (1979). “On Random Complete Packing by Discs.” Annals of the Institute of
Statistical Mathematics, 31(Part B), 351–365.

Taylor B, Davies T, Rowlingson B, Diggle P (2012). lgcp: Log-Gaussian Cox Process. URL
http://cran.r-project.org/web/packages/lgcp/vignettes/lgcp.pdf.

Wand M, Ripley B (2012). KernSmooth: Functions for Kernel Smoothing for Wand and
Jones (1995). URL http://cran.r-project.org/.

Zheng P, Diggle P (2012). spatialkernel: Nonparameteric Estimation of Spatial Segregation
in a Multivariate Point Process. URL http://cran.r-project.org/.

Zhuang J, Ogata Y, Jones D (2002). “Stochastic Declustering of Space-Time Earthquake
Occurrences.” Journal of the American Statistical Association, 97(458), 369–380.

http://cran.r-project.org/
http://www.r-project.org
http://www.r-project.org
http://cran.r-project.org/web/packages/lgcp/vignettes/lgcp.pdf
http://cran.r-project.org/
http://cran.r-project.org/

Journal of Statistical Software 29

Affiliation:

Edith Gabriel
Département de Mathématiques
Université d’Avignon et des Pays de Vaucluse
33 Rue Louis Pasteur
84000 Avignon, France
E-mail: edith.gabriel@univ-avignon.fr
URL: http://edith.gabriel.pagesperso-orange.fr/

Barry Rowlingson
Division of Medicine
Lancaster University
Lancaster LA1 4YB, UK
E-mail: b.rowlingson@lancaster.ac.uk

Peter Diggle
Division of Medicine
Lancaster University
Lancaster LA1 4YB, UK
E-mail: p.digglel@lancaster.ac.uk

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume VV, Issue II Submitted: yyyy-mm-dd
MMMMMM YYYY Accepted: yyyy-mm-dd

mailto:edith.gabriel@univ-avignon.fr
http://edith.gabriel.pagesperso-orange.fr/
mailto:b.rowlingson@lancaster.ac.uk
mailto:p.digglel@lancaster.ac.uk
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Spatio-temporal point processes
	First-order and second-order properties
	Stationarity
	Separability
	Static and dynamic plotting of spatio-temporal point process data
	Analysing space-time point process data
	Space-time inhomogeneous K-function
	Space-time inhomogeneous pair correlation function
	Application to FMD data

	Models
	Poisson process
	Homogeneous Poisson process
	Inhomogeneous Poisson process

	Poisson cluster process
	Interaction processes
	Inhibition process
	Contagious process

	Infectious processes
	Log-Gaussian Cox processes

