20th Workshop on Stochastic Geometry, Stereology and Image Analysis 2-7 June, 2019, Sandbjerg Estate, Denmark

Adrien Mazoyer

Abstract

Monte-Carlo integration in any dimension using a single determinantal point process

Joint with Jean-François Coeurjolly and Pierre-Olivier Amblard

In a recent work [1], a particular projection determinantal point process (DPP), called Orthogonal Polynomial Ensemble (OPE), has been proposed to produce exactly *n* quadrature points to estimate $\int_{[0,1]^d} f_d(u) \mu(du)$ where, for some $d \ge 1$, f_d is a *d*-dimensional μ -measurable function. The authors proved that their estimator satisfies a central limit theorem with explicit variance and rate of convergence $\sqrt{n^{1+1/d}}$ instead of the typical \sqrt{n} , under the main assumption that f_d is continuously differentiable and compactly supported.

Using a product of Dirichlet type kernels instead of orthogonal polynomials, we extend this work when μ is the Lebesgue measure: to mimic a problem encountered in computer experiments, we investigate the problem of estimating $\mathscr{I}_{\omega} = \int_{[0,1]^{\omega}} f_{\omega}(u) du$ using a single configuration of d-dimensional points. We prove that our Dirichlet model is actually well-suited to such a problem, by exploiting the fact that any projection on a lower dimensional space of this model is distributed as a particular α -DPP. For any $\omega = 1, \ldots, d$, we eventually exhibit estimator of \mathscr{I}_{ω} which satisfies a central limit theorem with explicit variance and rate of convergence $\sqrt{n^{1+1/d}}$. Moreover, we relax the required assumptions for the function f_{ω} : we only require that f_{ω} is "half"-differentiable (an assumption which is for instance satisfied for the L^1 -norm) and do not impose that f_{ω} is compactly supported.

References

[1] R. Bardenet and A. Hardy (2019) Monte Carlo with determinantal point processes. arXiv preprint arXiv:1605.00361, to appear in *Annal of Applied Probability*.