

Jesper Møller

The structure of stationary time series and point processes when constructing singular distribution functions

Joint with Horia Cornean, Ira W. Herbst, Benjamin Støttrup and Kasper S. Sørensen

A function $F : \mathbb{R} \to \mathbb{R}$ is singular if it is non-constant and F'(x) = 0 for Lebesgue almost all $x \in \mathbb{R}$ (sometimes further conditions are imposed). We construct rich classes of singular cumulative distribution functions (CDF) F for random variables X on the unit interval [0, 1]. Our basic idea is to construct such functions by considering a q-adic expansion of X, where $q \in \mathbb{N}$, and where the coefficients in the expansion form a time series as follows. Let X_1, X_2, \ldots be a time series with values in $\{0, 1, \ldots, q-1\}$. Then define $X := \sum_{n=1}^{\infty} X_n q^{-n}$.

In particular, we completely characterize the CDF when $\{X_n\}_1^\infty$ is stationary; or equivalently when the point process $\sum_{1}^{\infty} \delta_{X_n}(\cdot)$ is stationary (here, δ_t is the Dirac measure at t). In fact F becomes a mixture of three CDFs F_1, F_2, F_3 on [0, 1], where F_1 is the uniform CDF on [0,1]; F_2 is singular discrete and is a mixture of countable many CDFs, each of them being uniform on a finite set of so-called purely repeating q-adic numbers which are members of a cycle (we clarify how this corresponds to a stationary cyclic Markov chain of order equal to the length of the cycle); and F_3 is singular continuous.

Two simple models are well-known: Take $\{X_n\}_{n\geq 1}$ to be independent identically distributed. In the dyadic case q = 2, if 0 and 1 equally likely, then dF is just Lebesgue measure on [0, 1]. In the triadic case q = 3, if 0 and 2 are equally likely and $P(X_1 = 1) = 0$, then F is the well known Cantor function.

These models and several others are discussed more fully in the talk. Moreover,

we demonstrate in several examples that continuity of F is a natural property when considering specific models for stationary time series and point processes.