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Three-dimensional example

What is the “actual” topology of this surface?
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Homology.

Persistent homology: definition, structure, algorithm.

Stability and applications.

Current work.



Mod 2 simplicial chains

k-chain of X = union of k-simplices of X (k = 0, 1, 2, ... ).

The set of k-chains is a Z/2 vector space Ck(X).



Boundary operator

Let ∂k(s) be the boundary of a k-simplex s in X.

This defines a linear map ∂k : Ck(X) → Ck−1(X).



Homology groups

Ck+1(X)
∂k+1

−→ Ck(X)
∂k−→ Ck−1(X)

Cycle space Zk(X) = ker (∂k) ⊂ Ck(X).

Boundary space Bk(X) = im (∂k+1) ⊂ Ck(X).

The boundary of a chain is a cycle : Bk(X) ⊂ Zk(X).

Let Hk(X) = Zk(X)/Bk(X) = ker (∂k)/im (∂k+1).



H0(X)

The dimension β0(X) = dimH0(X) is the number of
connected components of X.



H1(X)

The dimension β1(X) = dimH1(X) counts the
“number of loops” of X.



H1(X)

The dimension β1(X) = dimH1(X) counts the
“number of loops” of X.



Closed surfaces

β1(X) = 2.genus.

picture from Allen Hatcher’s algebraic topology book.
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Filtration

f : X → R

ai : critical values of f .

X
i = f−1(−∞, ai].

Filtration of X : ∅ ⊂ · · · ⊂ X
i ⊂ X

i+1 ⊂ · · · ⊂ X
n = X.

Simplicial filtration : Xi is a simplicial complex
and X

i+1 = X
i ∪ s.



How does H∗(X
i) change?

s

s

First case : ∂s /∈ Bi
k−1

∂s goes into Bi+1
k−1.

∂s 6= 0 in H i
k−1, but ∂s = 0 in H i+1

k−1 : destruction.

f ik−1 : H
i
k−1 −→ H i+1

k−1 is surjective, with kernel < ∂s >.



How does H∗(X
i) change?

s

s

u

v

v

v

v

v
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Second case : ∂s ∈ Bi
k−1

Let u ∈ C i
k be such that ds = du.

∂(u+ s) = 0, and u+ s /∈ Bi+1
k : creation.

f ik : H
i
k −→ H i+1

k is injective, H i+1
k /im f ik =< u+ s >.



Directed system

H1
k −→ . . . −→ H i

k

f i
k−→ H i+1

k −→ . . . −→ Hn
k

Describes how the topology of Xi evolves.

How can we summarize this information?



Persistence

[ELZ02]

H1
k −→ . . . −→ Hi

k

f i

k−→ Hi+1
k −→ . . . −→ Hn

k

For u ∈ Hi
k, we define :

b(u) = min{ j ≤ i | u ∈ im (Hj
k −→ Hi

k)}

For u ∈ ker f ik, we pair ai+1 and ab(u).

→ persistence intervals [ab(u), ai+1]

Each interval represents the life-span of a homology class in the
filtration.



Persistence intervals

f
∞

X

Track the evolution of the topology of sub-level sets
as the threshold increases.

Pair thresholds that create components with those
that destroy them.
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Incremental step

¯∂σi+1 was created before j ≤ i iff

∂σi+1 ∈ Z(Kj) + B(Ki)

Use the i first columns of D to push the lowest 1 of
Di+1 as high as possible.

Gauss pivoting on the boundary operator



Algorithm

Persistence algorithm
Sort the simplices by increasing function values.
Build the mod 2 incidence matrix.
while two columns have their last 1 on the same row
do

add the leftmost to the rightmost.
end while
return {(value(si), value(slast(i)))}



Quiver representations

Interval module :

0 −→ . . . −→ 0 −→
i

Z/2−→ . . . −→
j

Z/2−→ 0 −→ . . . −→ 0

A directed system of vector spaces can be written
uniquely as the direct sum of interval modules.

Allows to define persistence intervals in the non
simplicial case.



Persistent Betti numbers

Define

βi,jk (f) = rk(Hk(Ki) → Hk(Kj))

βi,jk (f) is the number of persistence intervals that
contain [i, j] (“k-triangle lemma”).

Persistence intervals are given by −
∂2β

i,j

k
(f)

∂i∂j
.
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Persistence diagrams

∞

Persistence intervals become points in the plane.

The diagonal is included.



Metric on diagrams

db(A,B)

(R̄2, || . ||∞)

Definition. The bottleneck distance between multisets A and B is:

db(A,B) = inf
γ
sup
a

‖a− γ(a)‖∞

over all a ∈ A and all bijections γ : A → B.



Stability

Dk(g)

Dk(f)

g

f

Theorem. [CSEH04].For two tame functions f and g on a finitely

triangulable space:

db(Dk(f),Dk(g)) ≤ ‖f − g‖∞



Interleaving

F a

φa

��?
??

??
??

??
??

??
??

?
// F a+ε // F b

φb

��?
??

??
??

??
??

??
??

// F b+ε

Ga

ψa

�������

??�������

// Ga+ε // Gb

ψb

�������

??�������

// Gb+ε

where:

ε ≥ ‖f − g‖∞

F x = Hk(f
−1(−∞, x])

Gx = Hk(g
−1(−∞, x])



Quadrant Lemma

F a−ε

φa−ε

��

// F b+ε

Ga // Gb

ψb

OO

βa,bk (g) ≥ βa−ε,b+εk (f)

a

b

a+ε

b−ε

Dk(f)

Dk(g)



Sketch of proof

Dk(g)

Dk(f)

The quadrant lemma extends to boxes.
Bound on Hausdorff distance: dH(Dk(f),Dk(g)) ≤ ‖f − g‖∞
Bound on bottleneck distance for sufficiently close functions

i.e. ‖f − g‖
∞
< 1

2 (minimum distance between two points of Dk(f))

Linearly interpolating between f and g concludes the proof.



Betti numbers from samples

Build a simplicial approximation of the unknown shape
and compute its Betti numbers.

Use offsets/alpha-shapes.



Reconstruction by offset

Works for a large class of shapes in R
n [CCSL06].

But might require many data points.



“Sharp” angle problem
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“Sharp” angle problem



Weak feature size

wfs (S) = inf { positive critical value of distS}

wfs (S) > 0 if S ⊂ R
n is subanalytic [Fu95].



Betti numbers from samples
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wfs (S)

Theorem. [CSEH/CL04]. Let S and P be closed subsets of Rn.
If l is such that dH(S, P ) < l < wfs (S)/4:

βk(S) = βl,3l
k (distP )



Optimality

K

wfs (O) = 2, wfs (U) = +∞

dH(K,O) = dH(K,U) = 1/2



Comments

Persistent Betti numbers easily computable from the
Delaunay triangulation of the sample points.

You do not get any simplicial complex with the
correct Betti numbers.

Case of high dimensional ambiant space:
witness complexes [CdS03]



Problem for curves

If two curves are close, does it imply that their lengths are close?

Fréchet distance between C1 and C2:

dF (C1, C2) = inf
φ1,φ2

sup
s
d(φ1(s), φ2(s))

where φi ranges over all parameterizations of Ci.



Result

Theorem. Let C1 and C2 be two closed curves in Rn.

Let Li be the length of Ci, and Ki be the integral of its curvature.

One has:

|L1 − L2| ≤
2vol(Sn−1)

vol(Sn)
[K1 +K2 − 2π] dF (C1, C2)



Proof

fu

l

Crofton formula:

L(C) =
π

vol(Sn)

∫
hyperplane l⊂Rn

♯(l ∩ C)



Proof

fu

Let fu : C → R be the height function in the direction u.

If l has normal vector u, then ♯(l∩C) is twice the number
of “persistence intervals” of fu stabbed by l.



Proof

fu

Hence : ∫
l hyperplane with normal u

♯(l ∩ C)

is twice the total length of the persistence intervals of fu.



Proof

d

d

d

d

2d

2d

Stability theorem : the bounds of the persistence intervals of fu

move by at most dF (C1, C2) = d.

Hence the total length of these intervals changes by at most

d(nu1 + nu2 − 2), where nu is the number of critical points of fu.



Proof

By integrating over all directions :

|L1 − L2| ≤ 2d
π

vol(Sn)

∫
u∈Sn−1

nu1 + nu2 − 2 du

The integral of the number of critical points nui over u ∈ S
n−1

is the integral of the curvature of Ci divided par π/vol(Sn−1)



Surfaces

Theorem. Let S1 = ∂V1 and S2 = ∂V2 be two closed surfaces

in R3 with the same genus g. Let Hi be the total mean curvature of Si,

and Ki be its total absolute Gauss curvature. One has:

|H1 −H2| ≤ [K1 +K2 − 4π(1 + g)] dF (V1, V2)

Holds for piecewise-linear surfaces, for which simple formula

exist: accurate total mean curvature estimation from a mesh.

Closeness between normals to the surfaces is not required.
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