# Persistent homology and geometric inference

David Cohen-Steiner

Workshop on Tensor Valuations in Stochastic Geometry and Imaging

Sandbjerg 2014



#### **Topological noise**



• How many components in  $g^{-1}(-\infty, x]$ ?

## **Topological noise**



• How many components in  $g^{-1}(-\infty, x]$ ?

#### **Three-dimensional example**



#### • What is the "actual" topology of this surface?

#### Outline

Homology.

Persistent homology: definition, structure, algorithm.

Stability and applications.

Current work.

## Mod 2 simplicial chains



k-chain of X = union of k-simplices of X (k = 0, 1, 2, ...).
The set of k-chains is a Z/2 vector space C<sub>k</sub>(X).

#### **Boundary operator**



- Let  $\partial_k(s)$  be the boundary of a k-simplex s in X.
- This defines a linear map  $\partial_k : C_k(\mathbb{X}) \to C_{k-1}(\mathbb{X})$ .

## Homology groups

$$C_{k+1}(\mathbb{X}) \xrightarrow{\partial_{k+1}} C_k(\mathbb{X}) \xrightarrow{\partial_k} C_{k-1}(\mathbb{X})$$

- Cycle space  $Z_k(\mathbb{X}) = \ker (\partial_k) \subset C_k(\mathbb{X})$ .
- Boundary space  $B_k(\mathbb{X}) = \operatorname{im} (\partial_{k+1}) \subset C_k(\mathbb{X}).$
- The boundary of a chain is a cycle :  $B_k(\mathbb{X}) \subset Z_k(\mathbb{X})$ .
- Let  $H_k(\mathbb{X}) = Z_k(\mathbb{X})/B_k(\mathbb{X}) = \ker(\partial_k)/\operatorname{im}(\partial_{k+1}).$





■ The dimension β<sub>0</sub>(X) = dim H<sub>0</sub>(X) is the number of connected components of X.





• The dimension  $\beta_1(\mathbb{X}) = \dim H_1(\mathbb{X})$  counts the "number of loops" of  $\mathbb{X}$ .





• The dimension  $\beta_1(\mathbb{X}) = \dim H_1(\mathbb{X})$  counts the "number of loops" of  $\mathbb{X}$ .

#### **Closed surfaces**



•  $\beta_1(\mathbb{X}) = 2$ .genus.

picture from Allen Hatcher's algebraic topology book.

#### Outline

Homology.

Persistent homology : definition, structure, algorithm.

Stability and applications.

Current work.

#### Filtration

$$f: \mathbb{X} \to \mathbb{R}$$

•  $a_i$ : critical values of f.

- $\blacksquare \mathbb{X}^i = f^{-1}(-\infty, a_i].$
- Filtration of  $\mathbb{X}$  :  $\emptyset \subset \cdots \subset \mathbb{X}^i \subset \mathbb{X}^{i+1} \subset \cdots \subset \mathbb{X}^n = \mathbb{X}$ .
- Simplicial filtration :  $\mathbb{X}^i$  is a simplicial complex and  $\mathbb{X}^{i+1} = \mathbb{X}^i \cup s$ .

### How does $H_*(\mathbb{X}^i)$ change?



### How does $H_*(\mathbb{X}^i)$ change?



#### **Directed system**

# $H_k^1 \longrightarrow \ldots \longrightarrow H_k^i \xrightarrow{f_k^i} H_k^{i+1} \longrightarrow \ldots \longrightarrow H_k^n$

• Describes how the topology of  $X^i$  evolves.

How can we summarize this information?

#### Persistence

#### [ELZ02]

$$H_k^1 \longrightarrow \ldots \longrightarrow H_k^i \xrightarrow{f_k^i} H_k^{i+1} \longrightarrow \ldots \longrightarrow H_k^n$$

• For  $u \in H_k^i$ , we define :  $b(u) = \min\{j \le i \mid u \in im (H_k^j \longrightarrow H_k^i)\}$ 

For  $u \in \ker f_k^i$ , we pair  $a_{i+1}$  and  $a_{b(u)}$ .

 $\rightarrow$  persistence intervals  $[a_{b(u)}, a_{i+1}]$ 

Each interval represents the life-span of a homology class in the filtration.



- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.



- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.



- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.



- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.



- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.



- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.



- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

#### **Incremental step**

•  $\partial \sigma_{i+1}$  was created before  $j \leq i$  iff

$$\partial \sigma_{i+1} \in Z(K_j) + B(K_i)$$

- Use the *i* first columns of *D* to push the lowest 1 of  $D_{i+1}$  as high as possible.
- Gauss pivoting on the boundary operator

## **Algorithm**

#### **Persistence algorithm**

Sort the simplices by increasing function values.

Build the mod 2 incidence matrix.

while two columns have their last 1 on the same rowdo

add the leftmost to the rightmost.

#### end while

return { $(value(s_i), value(s_{last(i)}))$ }

#### **Quiver representations**

Interval module :

## $0 \longrightarrow \ldots \longrightarrow 0 \longrightarrow \mathbb{Z}^{i}/2 \longrightarrow \ldots \longrightarrow \mathbb{Z}^{j}/2 \longrightarrow 0 \longrightarrow \ldots \longrightarrow 0$

- A directed system of vector spaces can be written uniquely as the direct sum of interval modules.
- Allows to define persistence intervals in the non simplicial case.

#### **Persistent Betti numbers**

#### Define

$$\beta_k^{i,j}(f) = \mathsf{rk}(H_k(K_i) \to H_k(K_j))$$

•  $\beta_k^{i,j}(f)$  is the number of persistence intervals that contain [i, j] ("*k*-triangle lemma").

• Persistence intervals are given by  $-\frac{\partial^2 \beta_k^{i,j}(f)}{\partial_i \partial_j}$ .

#### Outline

Homology.

Persistent homology : definition, structure, algorithm.

Stability and applications.

Current work.

#### **Persistence diagrams**



Persistence intervals become points in the plane.

The diagonal is included.

### **Metric on diagrams**



**Definition.** The *bottleneck distance* between multisets A and B is:

$$d_b(A, B) = \inf_{\gamma} \sup_{a} \|a - \gamma(a)\|_{\infty}$$

over all  $a \in A$  and all bijections  $\gamma : A \to B$ .





**Theorem.** [CSEH04]. For two tame functions f and g on a finitely triangulable space:

$$d_b(\mathcal{D}_k(f), \mathcal{D}_k(g)) \le \|f - g\|_{\infty}$$

# Interleaving



where:

• 
$$\varepsilon \ge \|f - g\|_{\infty}$$
  
•  $F^x = H_k(f^{-1}(-\infty, x])$   
•  $G^x = H_k(g^{-1}(-\infty, x])$ 

#### **Quadrant Lemma**



#### **Sketch of proof**



- The quadrant lemma extends to boxes.
- Bound on Hausdorff distance:  $d_H(D_k(f), D_k(g)) \le ||f g||_{\infty}$
- Bound on bottleneck distance for sufficiently close functions *i.e.*  $\|f g\|_{\infty} < \frac{1}{2}$  (minimum distance between two points of  $D_k(f)$ )
- Linearly interpolating between f and g concludes the proof.
## **Betti numbers from samples**



- Build a simplicial approximation of the unknown shape and compute its Betti numbers.
- Use offsets/alpha-shapes.

## **Reconstruction by offset**



- Works for a large class of shapes in  $\mathbb{R}^n$  [CCSL06].
- But might require many data points.













### Weak feature size



wfs (S) = inf { positive critical value of dist<sub>S</sub>}
wfs (S) > 0 if S ⊂ ℝ<sup>n</sup> is subanalytic [Fu95].

### **Betti numbers from samples**



**Theorem.** [CSEH/CL04]. Let S and P be closed subsets of  $\mathbb{R}^n$ . If l is such that  $d_H(S, P) < l < wfs(S)/4$ :

$$\beta_k(S) = \beta_k^{l,3l}(\mathsf{dist}_P)$$

### **Optimality**



•  $d_H(K, O) = d_H(K, U) = 1/2$ 

### Comments

- Persistent Betti numbers easily computable from the Delaunay triangulation of the sample points.
- You do not get any simplicial complex with the correct Betti numbers.
- Case of high dimensional ambiant space: witness complexes [CdS03]

### **Problem for curves**



- If two curves are close, does it imply that their lengths are close?
- Fréchet distance between  $C_1$  and  $C_2$ :

$$d_F(C_1, C_2) = \inf_{\phi_1, \phi_2} \sup_{s} d(\phi_1(s), \phi_2(s))$$

where  $\phi_i$  ranges over all parameterizations of  $C_i$ .

### Result



**Theorem.** Let  $C_1$  and  $C_2$  be two closed curves in  $\mathbb{R}^n$ . Let  $L_i$  be the length of  $C_i$ , and  $K_i$  be the integral of its curvature. One has:

$$|L_1 - L_2| \le \frac{2\mathrm{vol}(\mathbb{S}^{n-1})}{\mathrm{vol}(\mathbb{S}^n)} [K_1 + K_2 - 2\pi] \ d_F(C_1, C_2)$$



Crofton formula:

$$L(C) = \frac{\pi}{\operatorname{vol}(\mathbb{S}^n)} \int_{\text{hyperplane } l \subset \mathbb{R}^n} \sharp(l \cap C)$$



• Let  $f^u: C \to \mathbb{R}$  be the height function in the direction u.

• If *l* has normal vector *u*, then  $\sharp(l \cap C)$  is twice the number of "persistence intervals" of  $f_u$  stabled by *l*.





- Stability theorem : the bounds of the persistence intervals of f<sup>u</sup> move by at most d<sub>F</sub>(C<sub>1</sub>, C<sub>2</sub>) = d.
- Hence the total length of these intervals changes by at most  $d(n_1^u + n_2^u 2)$ , where  $n^u$  is the number of critical points of  $f^u$ .

By integrating over all directions :

$$|L_1 - L_2| \le 2d \frac{\pi}{\operatorname{vol}(\mathbb{S}^n)} \int_{u \in \mathbb{S}^{n-1}} n_1^u + n_2^u - 2 du$$

The integral of the number of critical points  $n_i^u$  over  $u \in \mathbb{S}^{n-1}$ is the integral of the curvature of  $C_i$  divided par  $\pi/\text{vol}(\mathbb{S}^{n-1})$ 

#### Surfaces

**Theorem.** Let  $S_1 = \partial V_1$  and  $S_2 = \partial V_2$  be two closed surfaces in  $\mathbb{R}^3$  with the same genus g. Let  $H_i$  be the total mean curvature of  $S_i$ , and  $K_i$  be its total absolute Gauss curvature. One has:

$$|H_1 - H_2| \le [K_1 + K_2 - 4\pi(1+g)] d_F(V_1, V_2)$$

- Holds for piecewise-linear surfaces, for which simple formula exist: accurate total mean curvature estimation from a mesh.
- Closeness between normals to the surfaces is not required.

### Outline

Homology.

Persistent homology : definition, structure, algorithm.

Stability and applications.

Current work.