
Statistical models and methods for spatial point
processes

Rasmus Waagepetersen
Department of Mathematics

Aalborg University
Denmark

May 28, 2013

1 / 156

Lectures:
1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC

Aim: overview of

◮ spatial point process theory

◮ statistics for spatial point processes with emphasis on
estimating equation inference

◮ not comprehensive: the most fundamental topics and my
favorite things.

◮ all methods in Section 1-5 implemented in R package
spatstat
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1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC
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Mucous membrane cells

Centres of cells in mucous membrane: Repulsion due to physical
extent of cells

Inhomogeneity - lower
intensity in upper part

Bivariate - two types of
cells

Same type of
inhomogeneity for two
types ?
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Data example: Capparis Frondosa

◮ observation window W
= 1000 m × 500 m

◮ seed dispersal⇒ clustering

◮ environment ⇒
inhomogeneity
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Potassium content in soil.

Objective: quantify dependence on environmental variables and
clustering
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Whale positions

Close up:
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Aim: estimate whale intensity λ

Observation window W = narrow strips around transect lines

Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering
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Somalian pirates - two-type space-time
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Cotton plantations in the Deep South
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What is a spatial point process ?

Definitions:

1. a locally finite random subset X of R2 (#(X ∩ A) finite for all
bounded subsets A ⊂ R2)

2. stochastic process of count variables {N(B)}B∈B0 indexed by
bounded Borel sets B0.

3. a random counting measure N on R2

Equivalent provided no multiple points: (N(A) = #(X ∩ A) )

This course: appeal to 1. and skip measure-theoretic details.

In practice distribution specified by an explicit construction (this
and second lecture) or in terms of a probability density (third
lecture).
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Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X ∩ A).

Intensity measure µ:

µ(A) = EN(A), A ⊆ R2

In practice often given in terms of intensity function

µ(A) =

∫

A
ρ(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

ρ(u)dA ≈ EN(A) ≈ P(X has a point in A)
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Second-order moments

Second order factorial moment measure:

α(2)(A× B) = E

6=∑

u,v∈X
1[u ∈ A, v ∈ B ] A,B ⊆ R2

=

∫

A

∫

B
ρ(2)(u, v)du dv

where ρ(2)(u, v) is the second order product density

Infinitesimal interpretation of ρ(2) (u ∈ A ,v ∈ B):

ρ(2)(u, v)dAdB ≈ P(X has a point in each of A and B)
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Second moment vs. second factorial moment measure

Second moment measure

µ(2)(A× B) = EN(A)N(B) = α(2)(A× B) +
∑

u∈X
1[u ∈ A ∩ B ]

Hence due to “diagonal terms” in sum not absolutely continous.
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Campbell formulae

By definition of intensity function and product density and the
standard proof we obtain the useful Campbell formulae: Campbell
formula (by standard proof)

E
∑

u∈X
h(u) =

∫
h(u)ρ(u)du

E
6=∑

u,v∈X
h(u, v) =

∫∫
h(u, v)ρ(2)(u, v)dudv
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Pair correlation function

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
=

P(X has a point in each of A and B)

P(X has a point in A)P(X has a point in B)

= 1 if independence (Poisson process, next section)
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Covariance and pair correlation function

Cov[N(A),N(B)] =

∫

A∩B
ρ(u)du +

∫

A

∫

B
ρ(u)ρ(v)(g(u, v) − 1)dudv

= Poisson variance + extra variance due

to interaction
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K -function

K (t) =

∫

‖h‖≤t
g(h)dh

(provided g(u, v) = g(u − v) i.e. X second-order reweighted
stationary)

Examples of pair
correlation and
K -functions:
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Unbiased estimate of K -function (W observation window):

K̂ (t) =
∑

u,v∈X∩W

1[0 < ‖u − v‖ ≤ t]

ρ(u)ρ(v)
eu,v

(eu,v edge correction factor)
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Exercises

1. Show that the covariance between counts N(A) and N(B) is
given by

Cov[N(A),N(B ] = µ(A ∩ B) + α(2)(A × B) +−µ(A)µ(B)

2. Check covariance formula on slide 15.

3. Show that

K (t) :=

∫

R2

1[‖u‖ ≤ t]g(u)du =
1

|B |E
6=∑

u∈X∩B
v∈X

1[‖u − v‖ ≤ t]

ρ(u)ρ(v)

(Hint: use the Campbell formula)

4. Show that the following estimate is unbiased:

K̂ (t) =

6=∑

u,v∈X∩W

1[‖u − v‖ ≤ t]

ρ(u)ρ(v)|W ∩Wu−v |

where Wu−v translated version of W .
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1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC
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The Poisson process
Assume µ locally finite measure on R2 with density ρ.

X is a Poisson process with intensity measure µ if for any bounded
region B with µ(B) > 0:

1. N(B) ∼ Poisson(µ(B))

2. Given N(B), points in X ∩ B i.i.d. with density ∝ ρ(u), u ∈ B

B = [0, 1] × [0, 0.7]:
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Homogeneous: ρ = 150/0.7 Inhomogeneous: ρ(x , y) ∝ e−10.6y

19 / 156

Existence of Poisson process on R2: use definition on disjoint
partitioning R2 = ∪∞

i=1Bi of bounded sets Bi .

Independent scattering:

◮ A,B ⊆ R2 disjoint ⇒ X ∩ A and X ∩ B independent

◮ ρ(2)(u, v) = ρ(u)ρ(v) and g(u, v) = 1

◮ Cov[N(A),N(B)] =
∫
A∪B ρ(u)du

20 / 156



Characterization in terms of void probabilities

The distribution of X is uniquely determined by the void
probabilities P(X ∩ B = ∅), for bounded subsets B ⊆ R2.

Intuition: consider very fine subdivision of observation window –
then at most one point in each cell and probabilities of
absence/presence determined by void probabilities.

Hence, a point process X with intensity measure µ is a Poisson
process if and only if

P(X ∩ B = ∅) = exp(−µ(B))

for any bounded subset B .
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Homogeneous Poisson process as limit of Bernouilli trials

Consider disjoint subdivision
W = ∪n

i=1Ci where |Ci | = |W |/n. With
probability ρ|Ci | a uniform point is
placed in Ci .

Number of points in subset A is b(n|A|/|W |, ρ|W |/n) which
converges to a Poisson distribution with mean ρ|A|.

Hence, Poisson process default model when points occur
independently of each other.
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Distribution and moments of Poisson process

X a Poisson process on S with µ(S) =
∫
S ρ(u)du <∞ and F set

of finite point configurations in S .

By definition of a Poisson process

P(X ∈ F ) (1)

=
∞∑

n=0

e−µ(S)

n!

∫

Sn

1[{x1, x2, . . . , xn} ∈ F ]
n∏

i=1

ρ(xi )dx1 . . . dxn

Similarly,

Eh(X)

=
∞∑

n=0

e−µ(S)

n!

∫

Sn

h({x1, x2, . . . , xn})
n∏

i=1

ρ(xi )dx1 . . . dxn
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Proof of independent scattering (finite case)
Consider bounded A,B ⊆ R2.

X ∩ (A ∪ B) Poisson process. Hence

P(X ∩ A ∈ F ,X ∩ B ∈ G ) (x = {x1, . . . , xn})

=
∞∑

n=0

e−µ(A∪B)

n!

∫

(A∪B)n
1[x ∩ A ∈ F , x ∩ B ∈ G ]

n∏

i=1

ρ(xi )dx1 . . . dxn

=
∞∑

n=0

e−µ(A∪B)

n!

n∑

m=0

n!

m!(n −m)!

∫

Am

1[{x1, x2, . . . , xm} ∈ F ]

∫

Bn−m

1[{xm+1, . . . , xn} ∈ G ]
n∏

i=1

ρ(xi )dx1 . . . dxn

= (interchange order of summation and sum over m and k = n −m)

P(X ∩ A ∈ F )P(X ∩ B ∈ G )
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Superpositioning and thinning

If X1,X2, . . . are independent Poisson processes (ρi ), then
superposition X = ∪∞

i=1Xi is a Poisson process with intensity
function ρ =

∑∞
i=1 ρi(u) (provided ρ integrable on bounded sets).

Conversely: Independent π-thinning of Poisson process X:
independent retain each point u in X with probability π(u).
Thinned process Xthin and X \Xthin are independent Poisson
processes with intensity functions π(u)ρ(u) and (1− π(u))ρ(u).

(Superpositioning and thinning results most easily verified using
void probability characterization of Poisson process, see M & W,
2003)

For general point process X: thinned process Xthin has product
density π(u)π(v)ρ(2)(u, v) - hence g and K invariant under
independent thinning.

25 / 156

Density (likelihood) of a finite Poisson process
X1 and X2 Poisson processes on S with intensity functions ρ1 and
ρ2 where

∫
S ρ2(u)du <∞ and ρ2(u) = 0 ⇒ ρ1(u) = 0. Define

0/0 := 0. Then

P(X1 ∈ F )

=
∞∑

n=0

e−µ1(S)

n!

∫

Sn

1[x ∈ F ]
n∏

i=1

ρ1(xi )dx1 . . . dxn (x = {x1, . . . , xn})

=
∞∑

n=0

e−µ2(S)

n!

∫

Sn

1[x ∈ F ]eµ2(S)−µ1(S)
n∏

i=1

ρ1(xi )

ρ2(xi )

n∏

i=1

ρ2(xi )dx1 . . . dxn

=E
(
1[X2 ∈ F ]f (X2)

)

where

f (x) = eµ2(S)−µ1(S)
n∏

i=1

ρ1(xi )

ρ2(xi )

Hence f is a density of X1 with respect to distribution of X2.
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In particular (if S bounded): X1 has density

f (x) = e
∫
S (1−ρ1(u))du

n∏

i=1

ρ1(xi)

with respect to unit rate Poisson process (ρ2 = 1).
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Back to the rain forest

◮ observation window W
= 1000 m × 500 m

◮ seed dispersal⇒ clustering

◮ environment ⇒
inhomogeneity
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Potassium content in soil.

Objective: quantify dependence on environmental variables and
clustering
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Inhomogeneous Poisson process

Log linear intensity function

ρ(u;β) = exp(z(u)βT), z(u) = (1, zelev(u), zpotassium(u), . . .)

Estimate β from Poisson log likelihood (spatstat)

∑

u∈X∩W
z(u)βT −

∫

W
exp(z(u)βT)du (W = observation window)

Model check using edge-corrected estimate of K -function

K̂ (t) =

6=∑

u,v∈X∩W

1[‖u − v‖ ≤ t]

ρ(u; β̂)ρ(v ; β̂)|W ∩Wu−v |

Wu−v translated version of W .
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Capparis Frondosa and Poisson process ?

Fit model with covariates elevation, potassium,...

Fitted intensity function

ρ(u; β̂) = exp(β̂z(u)T)
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Estimated K -function and
K (t) = πt2-function for
Poisson process:
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Not Poisson process - aggregation due to unobserved factors (e.g.
seed dispersal)
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Exercises

1. What is K (t) for a Poisson process ?

2. Check that the Poisson expansion (1) indeed follows from the
definition of a Poisson process.

3. Compute the second order product density for a Poisson
process X.

(Hint: compute second order factorial measure using the
Poisson expansion for X ∩ (A ∪ B) for bounded A,B ⊆ R2.)

4. (if time) Assume that X has second order product density ρ(2)

and show that g (and hence K ) is invariant under
independent thinning (note that a heuristic argument follows
easy from the infinitesimal interpretation of ρ(2)).

(Hint: introduce random field R = {R(u) : u ∈ R2}, of
independent uniform random variables on [0, 1], and
independent of X, and compute second order factorial
measure for thinned process Xthin = {u ∈ X|R(u) ≤ p(u)}.)
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1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC
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Cluster process: Inhomogeneous Thomas process

Parents stationary Poisson point process
intensity κ

Poisson(α) number of offspring
distributed around parents according to
bivariate Gaussian density

Inhomogeneity: offspring survive
according to probability

p(u) ∝ exp(Z (u)βT)

depending on covariates (independent
thinning).

0
1

2
3
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Cox processes

X is a Cox process driven by the random intensity function Λ if,
conditional on Λ = λ, X is a Poisson process with intensity
function λ.

Example: log Gaussian Cox process (“point process GLMM”)

log Λ(u) = βZ (u)T + Y (u)

where {Y (u)} Gaussian random field.

βZ (u)T Y (u) βZ (u)T + Y (u)
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−
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−
1

0
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−
2

0
2

4
6
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Wide range of covariance models available for Y : exponential,
Gaussian, Matérn,...(Tilmann’s course)

Cox processes ”bridge” between point processes and geostatistics.
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Shot-noise Cox process

Λ(u) =
∑

v∈C
γvk(u − v)

where

◮ C homogeneous Poisson with intensity κ
◮ k(·) probability density.
◮ γv iid positive random variables independent of C

NB: equivalent to cluster process with parents C, random cluster
size γv and dispersal density k .

Inhomogeneous shot-noise:

Λ(u) = exp[βZ (u)T]
∑

v∈C
γvk(u − v)

Inhomogeneous Thomas: inhomogeneous shot-noise with Gaussian
k(·) and γv = α > 0.
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Moments for Cox processes
Intensity function

ρ(u) = EΛ(u)

Second-order product density

ρ(2)(u, v) = EΛ(u)Λ(v) = Cov[Λ(u),Λ(v)] + ρ(u)ρ(v)

Cov[N(A),N(B)] =

∫

A∩B
EΛ(u)du +

∫

A

∫

B
Cov[Λ(u),Λ(v)]dudv

=

∫

A∩B
ρ(u)du +

∫

A

∫

B
ρ(u)ρ(v)[g(u, v) − 1]dudv

= Poisson variance + extra variance due to Λ

(overdispersion relative to a Poisson process)
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Log-linear model

Both log Gaussian and shot-noise Cox process of the form

Λ(u) = Λ0(u) exp[βZ (u)
T]

where Λ0 stationary non-negative reference process.

(interpretation: Cox process X independent inhomogeneous
thinning of stationary X0 with random intensity function Λ0).

Log-linear intensity (assume EΛ0(u) = 1)

ρ(u) = EΛ(u) = exp[βZ (u)T]

Pair correlation function (EΛ0(u) = 1):

g(h) = 1 + c0(h) c0(h) = Cov[Λ0(u),Λ0(u + h)]
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Specific models for c0(u − v) = Cov[Λ0(u),Λ0(v)]

Log-Gaussian:
Λ0(u) = exp[Y (u)]

where Y Gaussian field.

Covariance (Laplace transform):

c0(h) = exp[Cov(Y (u),Y (u + h))]− 1

Shot-noise:
Λ0(u) =

∑

v∈C
γvk(u − v)

Covariance (convolution):

c0(u − v) = κα2

∫

R2

k(u)k(u + h)du

(α = Eγv )
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normal-variance mixture Cox/cluster processes
Suppose kernel k(·) given by variance-gamma density.

Y variance-gamma if Y =
√
WU where W ∼ Γ and U ∼ Np(0, I )

⇒ closed under convolution.

Then Matérn covariance function:

c0(h) = σ20
(‖h‖/η)νKν(‖h‖/η)

2ν−1Γ(ν)

Suppose k(·) Cauchy density

k(u) =
1

2πω2
[1 + (‖u‖/ω)2)]−3/2

(normal with inverse-gamma variance) then

c0(r) = σ20[1 + (‖r‖/η)2]−3/2

Cauchy too (σ20 = κξ2/(2πη)2 η = 2ω)
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Density of a Cox process

◮ Restricted to a bounded region W , the density is

f (x) = E

[
exp

(
|W | −

∫

W
Λ(u)du

) ∏

u∈X
Λ(u)

]

◮ Not on closed form

◮ likelihood-based inference: MCMC or Laplace approximation
(INLA for log Gaussian Cox processes)

◮ estimating equations based on closed form expressions for
intensity and pair correlation
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Exercises

1. For a Cox process with random intensity function Λ, show that

ρ(u) = EΛ(u), ρ(2)(u, v) = E[Λ(u)Λ(v)]

2. Show that a cluster process with Poisson(α) number of iid
offspring is a Cox process with random intensity function

Λ(u) = α
∑

v∈C
k(u − v)

(using notation from previous slide on cluster processes. Hint:
use void probability characterisation and superposition result
for Poisson process)

3. Compute the intensity and second-order product density for an
inhomogeneous Thomas process. (Hint: interpret the Thomas
process as a Cox process and use the Campbell formula)

4. Show that pair correlation for LCGP is
g(u, v) = exp[Cov(Y (u),Y (v))]
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1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC
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Mucous membrane cells

Centres of cells in mucous membrane: Repulsion due to physical
extent of cells

Inhomogeneity - lower
intensity in upper part

Bivariate - two types of
cells

Same type of
inhomogeneity for two
types ?
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Density with respect to a Poisson process

X on bounded S has density f with respect to unit rate Poisson Y
if

P(X ∈ F ) = E
(
1[Y ∈ F ]f (Y)

)

=
∞∑

n=0

e−|S|

n!

∫

Sn

1[x ∈ F ]f (x)dx1 . . . dxn (x = {x1, . . . , xn})
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Example: Strauss process

For a point configuration x on a bounded region S , let n(x) and
s(x) denote the number of points and number of (unordered) pairs
of R-close points (R ≥ 0).

A Strauss process X on S has density

f (x) =
1

c
exp(βn(x) + ψs(x))

with respect to a unit rate Poisson process Y on S and

c = E exp(βn(Y) + ψs(Y)) (2)

is the normalizing constant (unknown).

Note: only well-defined (c <∞) if ψ ≤ 0.
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Intensity and conditional intensity
Suppose X has hereditary density f with respect to Y :
f (x) > 0 ⇒ f (y) > 0, y ⊂ x.

Intensity function ρ(u) = Ef (Y ∪ {u}) usually unknown (except for
Poisson and Cox/Cluster).

Instead consider conditional intensity

λ(u, x) =
f (x ∪ {u})

f (x)

(does not depend on normalizing constant !)

Note

ρ(u) = Ef (Y ∪ {u}) = E
[
λ(u,Y)f (Y)

]
= Eλ(u,X)

and

ρ(u)dA ≈ P(X has a point in A) = EP(X has a point in A|X\A), u ∈ A

Hence, λ(u,X)dA probability that X has point in very small region
A given X outside A.
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Density and conditional intensity - factorization

One-to-one correspondence between density and conditional
intensity (up to normalizing constant)

f ({x1, . . . , xn) =
n∏

i=1

λ(xi , {x1, . . . , xi−1)
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Markov point processes

Def: suppose that f hereditary and λ(u, x) only depends on x
through x ∩ b(u,R) for some R > 0 (local Markov property). Then
f is Markov with respect to the R-close neighbourhood relation.

Thm (Hammersley-Clifford) The following are equivalent.

1. f is Markov.

2.
f (x) =

∏

y⊆x

φ(y)

where φ(y) = 1 whenever ‖u − v‖ ≥ R for some u, v ∈ y.

Pairwise interaction process: φ(y) = 1 whenever n(y) > 2.

NB: in H-C, R-close neighbourhood relation can be replaced by an
arbitrary symmetric relation between pairs of points.
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Modelling the conditional intensity function

Suppose we specify a model for the conditional intensity. Two
questions:

1. does there exist a density f with the specified conditional
intensity ?

2. is f well-defined (integrable) ?

Solution:

1. find f by identifying interaction potentials
(Hammersley-Clifford) or guess f .

2. sufficient condition (local stability): λ(u, x) ≤ K

NB some Markov point processes have interactions of any order in
which case H-C theorem is less useful (e.g. area-interaction
process).
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Some examples
Strauss (pairwise interaction):

λ(u, x) = exp
(
β+ψ

∑

v∈x
1[‖u−v‖ ≤ R ]

)
, f (x) =

1

c
exp

(
βn(x)+ψs(x)

)

Overlap process (pairwise interaction marked point process):

λ((u,m), x) =
1

c
exp

(
β+ψ

∑

(u′,m′)∈x
|b(u,m)∩b(u′,m′)|

)
(ψ ≤ 0)

where x = {(u1,m1), . . . , (un,mn)} and (ui ,mi ) ∈ R2 × [a, b].

Area-interaction process:

f (x) =
1

c
exp

(
βn(x)+ψV (x)

)
, λ(u, x) = exp

(
β+ψ(V ({u}∪x)−V (x)

)

V (x) = | ∪u∈x b(u,R/2)| is area of union of balls b(u,R/2), u ∈ x.

NB: φ(·) complicated for area-interaction process.
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The Georgii-Nguyen-Zessin formula (‘Law of total
probability’)

E
∑

u∈X
k(u,X\{u}) =

∫

S
E[λ(u,X)k(u,X)]du =

∫

S
E![k(u,X) | u]ρ(u)du

E![· | u]: expectation with respect to the conditional distribution of
X \ {u} given u ∈ X (reduced Palm distribution)

Density of reduced Palm distribution:

f (x | u) = f (x ∪ {u})/ρ(u)

NB: GNZ formula holds in general setting for point process on Rd .
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The spatial Markov property and edge correction

Let B ⊂ S and assume X Markov
with interaction radius R .

Define: ∂B points in S \ B of
distance less than R

+

+

+

+

+

+

+
+

+
+

+

+

+

R ∂B

B

S

Factorization (Hammersley-Clifford):

f (x) =
∏

y⊆x∩(B∪∂B)

φ(y)
∏

y⊆x\B:
y∩S\(B∪∂B)6=∅

φ(y)

Hence, conditional density of X ∩ B given X \ B

fB(z|y) ∝ f (z ∪ y)

depends on y only through ∂B ∩ y.
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Edge correction using the border method
Suppose we observe x realization of X ∩W where W ⊂ S .

Problem: density (likelihood) fW (x) = Ef (x ∪ YS\W ) unknown.

Border method: base inference on

fW⊖R
(x ∩W⊖R |x ∩ (W \W⊖R))

i.e. conditional density of X ∩W⊖R given X outside W⊖R .

+

+
+

++

+

+

+

+
+

+

+
+

W

W⊖R

R

S
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Exercises

1. Suppose that S contains a disc of radius ǫ ≤ R/2. Show that
(2) is not finite, and hence the Strauss process not
well-defined, when ψ is positive.

(Hint:
∑∞

n=0
(πǫ2)n

n! exp(nβ + ψn(n − 1)/2) = ∞ if ψ > 0.)

2. Show that local stability for a spatial point process density
ensures integrability. Verify that the area-interaction process
is locally stable.

3. Starting with the conditional intensity for a Strauss process,
identify the potential function φ
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Exercises

4. (if time) Verify the Georgii-Nguyen-Zessin formula for a finite
point process.

(Hint: consider first the case of a finite Poisson-process Y in
which case the identity is known as the Slivnyak-Mecke
theorem, next apply Eg(X) = E

[
g(Y)f (Y)

]
.)
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1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC
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Summary: Cox/cluster vs. Markov

λ(u|X) ρ(u) GNZ Campbell interaction

Markov yes no yes no repulsive
Cox no yes no yes clustering
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Estimating function
Estimating function: e(θ) [e(θ,X)] function of θ and data X.

Parameter estimate θ̂ solution of

e(θ) = 0

θ̂ unbiased Eθ̂ = θ∗ if e(θ) unbiased Ee(θ∗) = 0 (θ∗ true value).

Varθ̂ = S−1ΣS−1 Σ = Vare(θ∗)

where sensitivity:

S = −E[
d

dθ
e(θ)]

minus expected derivative of e(θ)

How do we construct unbiased estimating functions involving X
and θ ?
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Composite and pseudo-likelihood

Disjoint subdivision W = ∪m
i=1Ci in

‘cells’ Ci .

ui ∈ Ci ‘center’ point.

Random indicator variables:

Yi = 1[X has a point in Ci ]

(presence/absence of points in Ci ).

P(Yi = 1) = |Ci |ρθ(ui ) and P(Yi = 1|X \ Ci ) = |Ci |λθ(ui ,X)

Idea: form composite likelihoods based on Yi , e.g.∏

i

P(Yi = 1)Yi (1− P(Yi = 1))1−Yi

Consider limit when |Ci | → 0.
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Log composite likelihood (in fact log likelihood for Poisson):

∑

u∈X
log ρθ(u)−

∫

W
ρθ(u)du

Log pseudo-likelihood (Besag, 1977)

∑

u∈X
log λθ(u,X\u)−

∫

W
λθ(u,X)du

Scores: ∑

u∈X

ρ′θ(u)
ρθ(u)

−
∫

W
ρ′θ(u)du

and ∑

u∈X

λ′θ(u,X\u)
λθ(u,X\u) −

∫

W
λ′θ(u,X)du

unbiased estimating functions by Campbell/GNZ.
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Issue:

◮ integrals ∫

W
ρ′θ(u)du and

∫

W
λ′θ(u,X)du

often not explicitly computable.

Numerical quadrature may introduce bias.
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Monte Carlo approximation

Let D ‘quadrature/dummy’ point process of intensity κ and
independent of X.

By GNZ

E
∫

W
λ′(u,X)du = E

∑

u∈X∪D

λ′(u,X)
λ(u,X) + κ

By Campbell

∫

W
ρ′(u)du = E

∑

u∈X∪D

ρ′(u)
ρ(u) + κ

Idea: replace integrals in pseudo- or composite likelihood with
unbiased estimates using D.
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Dummy point process

Should be easy to simulate and mathematically tractable.

Possibilities:

1. Poisson process

2. binomial point process (fixed number
of independent points)

3. stratified binomial point process

Stratified:

+ +

+

+

+

+

+

+

+
+

+

+

+

+
+

+
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Approximate pseudo- and composite likelihood scores:

s(θ) =
∑

u∈X

λ
′
θ(u,X \ u)
λθ(u,X \ u) −

∑

u∈(X∪D)

λ
′
θ(u,X \ u)

λθ(u,X \ u) + κ

s(θ) =
∑

u∈X

ρ
′
θ(u)

ρθ(u)
−

∑

u∈(X∪D)

ρ
′
θ(u)

ρθ(u) + κ

Note: of logistic regression/case control form with ‘probabilities’

p(u|X) = λθ(u,X \ u)
λθ(u,X \ u) + κ

and

p(u) =
ρθ(u)

ρθ(u) + κ

I.e. probabilities that u ∈ X given u ∈ X ∪D.

Hence computations straightforward with glm() software !
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Example: mucous membrane

86 (type 1) + 807 (type
2) points.

1× 0.7 observation
window.

Marked point u = (x , y ,m) where m = 1 or 2 (two types of
points).

Bivariate Strauss point process with

λθ(u,X) = exp[qm,θ(y) + ψnR(u,X)]

qm,θ(y): polynomial in spatial y -coordinate.

nR(u,X): number of neighbors within range R = 0.008.

3600 stratified dummy points (random marks 1 or 2).
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Fitted polynomials

Fitted polynomials (with
confidence intervals for selected
y values):

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
5

1.
0

1.
5

●

●

●

●
●

●

●

●

●

●
● ●

Polynomials significantly different
according to logistic likelihood
ratio test (parametric bootstrap).
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Issue: X inhomogeneous

λm(u) = exp[qm(y)]E exp[ψnR(u,X)]

so intensity function not proportional to log polynomial function.

Baddeley and Nair (2012): approximation of intensity functions for
Gibbs point processes
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Decomposition of variance

3600 14400
estm. sd sdpl inc. (%) sd sdpl inc. (%)

q1(0.1) 6.004 0.195 0.189 3.608 0.191 0.189 0.812
q1(0.3) 4.528 0.267 0.263 1.332 0.264 0.263 0.301
q1(0.5) 3.994 0.406 0.404 0.555 0.404 0.404 0.146
q2(0.1) 7.800 0.091 0.078 15.623 0.082 0.079 3.801
q2(0.3) 7.204 0.083 0.075 10.923 0.076 0.075 2.589
q2(0.5) 7.123 0.086 0.077 10.558 0.080 0.078 2.824
ψ −2.594 0.344 0.341 0.971 0.342 0.341 0.197

sdpl ≈ standard deviation for pseudo-likelihood without
approximation.
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Example: rain forest trees
Capparis Frondosa

Loncocharpus Heptaphyllus

Potassium content in soil.

2
4

6
8

Covariates pH, elevation,
gradient, potassium,...

Clustered point patterns: Cox point process natural model.

Objective: infer regression model ρβ(u) = exp[βZ (u)T]

Composite likelihood targeted at estimating intensity function.
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Problem: covariates sampled on (coarse) deterministic grid.

Plots shown: interpolated values of covariates.

Hence unbiased Monte Carlo approximation not applicable.

For now: integral in log composite likelihood

∑

u∈X
log ρβ(u)−

∫

W
ρβ(u)du

approximated using numerical quadrature based on interpolated
values.

Need to convince biologists to use random sampling designs.
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Another issue: optimality ?

Composite likelihood score

∑

u∈X

ρ′β(u)

ρβ(u)
−

∫

W
ρ′β(u)du

optimal for Poisson (likelihood).

Which f makes

ef (β) =
∑

u∈X
f (u)−

∫

W
f (u)ρβ(u)du

optimal for Cox point process (positive dependence between
points) ?
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Optimal first-order estimating equation

Optimal choice of f : smallest variance

Varβ̂ = Vf = S−1
f Σf S

−1
f

where

Sf = −E
d

dβT
ef (β) Σf = Varef (β)

Possible to obtain optimal f as solution of certain Fredholm
integral equation.

Numerical solution of integral equation leads to estimating
function of quasi-likelihood type.
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Quasi-likelihood

Integral equation approximated using
Riemann sum dividing W into cells Ci

with representative points ui .

Resulting estimating function is quasi-likelihood

(Y − µ)V−1D

based on

Y = (Y1, . . . ,Ym), Yi = 1[X has point in Ci ].

µ mean of Y :

µi = EYi = ρβ(ui)|Ci | and D =
[
dµ(ui)/dβl

]
il

V covariance of Y (involves covariance of random intensity):

Vij = Cov[Yi ,Yj ] = µi1[i = j] + |Ci ||Cj |[g(ui , uj)− 1]
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Results with composite likelihood and quasi-likelihood

species β̂

Loncocharpus
CL

−6.49 − 0.021Nmin − 0.11P − 0.59pH − 0.11twi
(81.06∗, 7.45∗, 58.78, 282.89∗ , 53.19∗)× 10−3

QL
−6.49 − 0.023Nmin − 0.12P − 0.55pH − 0.084twi
(80.15∗, 6.95∗, 55.23∗, 266.10∗ , 45.47) × 10−3

Capparis
CL

−5.07 + 0.028ele − 1.10grad + 0.0043K
(79.54∗, 9.98∗, 1200.36, 1.16∗)× 10−3

QL
−5.10 + 0.019ele − 2.50grad + 0.0039K
(77.77∗, 8.86∗, 935.02∗, 1.02∗)× 10−3

Estimated standard errors always smallest for QL. Covariate grad
significant according to QL but not for CL.
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Estimation of pair correlation function

Suppose parametric model g(·;ψ) for pair correlation.

Some options:

1. minimum contrast estimation based on K -function.

2. second-order composite likelihood: composite likelihood based
on indicators for joint occurrence of points in pairs of cells:

Xij = 1[Ni > 0 and Nj > 0]

Pβ,ψ(Xij = 1) = ρ(2)(u, v ;β, ψ)|Ci ||Cj |
= ρβ(ui )ρβ(vj)g(ui − uj ;ψ)|Ci ||Cj |
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Minimum contrast estimation for ψ
Computationally easy alternative if X second-order reweighted
stationary so that K -function well-defined.

Estimate of K -function:

K̂β(t) =
∑

u,v∈X∩W

1[0 < ‖u − v‖ ≤ t]

ρ(u;β)ρ(v ;β)
eu,v

Unbiased if β ‘true’ regression parameter.

Minimum contrast estimation: minimize
squared distance between theoretical K
and K̂ :

ψ̂ = argmin
ψ

∫ r

0

(
K̂β̂(t)− K (t;ψ)

)2
dt
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Second-order composite likelihood

Second-order composite likelihood (given β̂):

CL2(ψ|β̂) =
6=∏

u,v∈X∩W
‖u−v‖≤R

ρ(2)(u, v ; β̂, ψ)×

exp[−
∫∫

‖u−v‖≤R
ρ(2)(u, v ; β̂, ψ)dudv ]

NB: second-order reweighted stationarity (translation invariant pair
correlation) not required.
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Fitted pair correlation functions g(·) for Capparis and
Loncocharpus

Use shot-noise Cox process with dispersal kernel given by
variance-gamma density.

Then g(h)− 1 Matérn covariance function depending on
smoothness/shape parameter ν.
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−
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loncocharpus
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Loncocharpus:
Matérn ν = 0.5

Capparis:
Matérn ν = 0.25
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Two-step estimation

Obtain estimates (β̂, ψ̂) in two steps

1. obtain β̂ using composite likelihood

2. obtain ψ̂ using minimum contrast/second order composite
likelihood
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Asymptotic results - first order estimating function

Divide R2 into quadratic cells
Aij = [i , i + 1[×[j , j + 1[

W

Aij

b
b

b

bb

b

Then
ef (β) =

∑

ij :Aij⊆W

Uij

where

Uij =
∑

u∈X∩Aij

fβ(u)−
∫

Aij

fβ(u)ρβ(u)du

Assuming X is mixing, {Uij}ij mixing random field and

|W |−1/2ef (β) ≈ N(0,Σf )

(CLT for mixing random field {Uij}ij).
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Asymptotic results cntd.

Estimate β̂ solves
ef (β) = 0

And (Taylor)

ef (β) ≈ |W |(β̂ − β)Sf ⇔ (β̂ − β) = |W |−1ef (β)S
−1
f

where

Sf = −E
d

dβT
ef (β)/|W |

It follows that
β̂ ≈ N(β,Vf /|W |)

where
Vf = S−1

f Σf S
−1
f
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Alternative: “infill”/increasing intensity-asymptotics

If X infinitely divisible (e.g. Poisson or Poisson-cluster) then
X = ∪n

i=1Xn where Xi iid and intensity of X is ρβ(u) = nρ̃(u;β)
where ρ̃β intensity of Xi

ef (β) =
n∑

i=1

[ ∑

u∈Xi

fβ(u)−
∫

W
fβ(u)ρ̃(u;β)du

]

Ordinary CLT applies.
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Exercises

1. Check using the GNZ formula, that the score of the
pseudo-likelihood is an unbiased estimating function.

2. show that the approximate pseudo- and composite likelihood
scores (slide 66) are of logistic regression score form when the
intensity or conditional intensity is log linear

3. Check that the derivative of minimum contrast criterion and
the score of the second order composite likelihood function
are unbiased estimating functions when β is equal to the true
value.

4. Derive the second-order product density of a stratified
binomial point process with one point in each cell.

5. How can you partition af Poisson-cluster process X into a
union ∪n

i=1Xi of iid Poisson-cluster processes ?
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1. Intro to point processes and moment measures

2. The Poisson process

3. Cox and cluster processes

4. The conditional intensity and Markov point processes

5. Estimating equations

6. Likelihood-based inference and MCMC
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Maximum likelihood inference for point processes

Concentrate on point processes specified by unnormalized density
hθ(x),

fθ(x) =
1

c(θ)
hθ(x)

Problem: c(θ) in general unknown ⇒ unknown log likelihood

l(θ) = log hθ(x)− log c(θ)
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Importance sampling

Importance sampling: θ0 fixed reference parameter:

l(θ) ≡ log hθ(x)− log
c(θ)

c(θ0)

and
c(θ)

c(θ0)
= Eθ0

hθ(X)

hθ0(X)

Hence
c(θ)

c(θ0)
≈ 1

m

m−1∑

i=0

hθ(X
i )

hθ0(X
i )

where X0,X1, . . . , sample from fθ0 (later).
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Exponential family case

hθ(x) = exp(t(x)θT)

l(θ) = t(x)θT − log c(θ)

c(θ)

c(θ0)
= Eθ0 exp(t(X)(θ − θ0)

T)

Caveat: unless θ − θ0 ‘small’, exp(t(X)(θ − θ0)
T) has very large

variance in many cases (e.g. Strauss).
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Path sampling (exp. family case)

Derivative of cumulant transform:

d

dθ
log

c(θ)

c(θ0)
= Eθt(X)

Hence, by integrating over differentiable path θ(t) (e.g. line)
linking θ0 and θ1:

log
c(θ1)

c(θ0)
=

∫ 1

0
Eθ(s)[t(X)]

dθ(s)T

ds
ds

Approximate Eθ(s)t(X) by Monte Carlo and
∫ 1
0 by numerical

quadrature (e.g. trapezoidal rule).

NB Monte Carlo approximation on log scale more stable.
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Maximisation of likelihood (exp. family case)

Score and observed information:

u(θ) = t(x)− Eθt(X), j(θ) = Varθt(X),

Newton-Rahpson iterations:

θm+1 = θm + u(θm)j(θm)−1

Monte Carlo approximation of score and observed information: use
importance sampling formula

Eθk(X) = Eθ0

[
k(X) exp

(
t(X)(θ − θ0)

T
)]
/(cθ/cθ0)

with k(X) given by t(X) or t(X)Tt(X).
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MCMC simulation of spatial point processes
Birth-death Metropolis-Hastings algorithm for generating ergodic
sample X0,X1, . . . from locally stable density f on S :

Suppose current state is Xi , i ≥ 0.
1. Either: with probability 1/2

◮ (birth) generate new point u uniformly on S and accept
Xprop = Xi ∪ {u} with probability

min
{
1,

f (Xi ∪ {u})|S |
f (Xi )(n + 1)

}

or
◮ (death) select uniformly a point u ∈ Xi and accept

Xprop = Xi \ {u} with probability

min
{
1,

f (Xi \ {u})n
f (Xi )|S |

}

(if Xi = ∅ do nothing)

2. if accept Xi+1 = Xprop; otherwise Xi+1 = Xi .
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Initial state X0: arbitrary (e.g. empty or simulation from Poisson
process).

Note: Metropolis-Hastings ratio does not depend on normalizing
constant:

f (Xi ∪ {u})|S |
f (Xi )(n + 1)

= λ(u,Xi )
|S |

(n + 1)

Generated Markov chain X0,X1, . . . irreducible and aperiodic and
hence ergodic: 1

m

∑m−1
i=0 k(Xi ) → Ek(X))

Moreover, geometrically ergodic and CLT:

√
m
( 1

m

m−1∑

i=0

k(Xi )− Ek(X)
)
→ N(0, σ2k )
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Missing data

Suppose we observe x realization of X ∩W where W ⊂ S .
Problem: likelihood (density of X ∩W )

fW ,θ(x) = Efθ(x ∩ YS\W )

not known - not even up to proportionality ! (Y unit rate Poisson
on S)

Possibilities:

◮ Monte Carlo methods for missing data.

◮ Conditional likelihood

fW⊖R ,θ(x ∩W⊖R |x ∩ (W \W⊖R)) ∝ exp(t(x)θT)

(note: x ∩ (W \W⊖R) fixed in t(x))
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Likelihood-based inference for Cox/Cluster processes

Consider Cox/cluster process X with random intensity function

Λ(u) = α
∑

m∈M
f (m, u)

observed within W (M Poisson with intensity κ).

Assume f (m, ·) of bounded support and choose bounded W̃ so that

Λ(u) = α
∑

m∈M∩W̃
f (m, u) for u ∈ W

(X ∩W ,M ∩ W̃ ) finite point process with density:

f (x,m; θ) = f (m; θ)f (x|m; θ) = e|W̃ |(1−κ)κn(m)e|W |−
∫
W Λ(u)du

∏

u∈x
Λ(u)
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Likelihood

L(θ) = Eθf (x|M) = L(θ0)Eθ0
[ f (x,M ∩ W̃ ; θ)

f (x,M ∩ W̃ ; θ0)

∣∣∣ X ∩W = x
]

+ derivatives can be estimated using importance sampling/MCMC
- however more difficult than for Markov point processes.

Bayesian inference: introduce prior p(θ) and sample posterior

p(θ,m|x) ∝ f (x,m; θ)p(θ)

(data augmentation) using birth-death MCMC.
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Maximum likelihood estimation for log Gaussian Cox
processes

Likelihood (probability density) for Cox process given observed
point pattern x:

fθ(x) = Eθ[exp(−
∫

W
Λ(u)du)

∏

u∈x
Λ(u)]

Problem for Monte Carlo approximation: Λ = {Λ(u)}u∈W infinitely
dimensional quantity.

LCGP: approximate inference by
discretizing random field
Λ(u) = exp(βZ (u)T + Y (u))

Counts Ni Poisson with mean

exp(βZ (ui )
T + Y (ui ))|Ci |

(Poisson GLMM)
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Computations: MCMC+FFT or INLA (Laplace approximations
using Markov random fields for Gaussian field).
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Exercises

1. Check the importance sampling formulas

Eθk(X) = Eθ0

[
k(X)

hθ(X)

hθ0(X)

]
/(cθ/cθ0)

and
c(θ)

c(θ0)
= Eθ0

hθ(X)

hθ0(X)
(3)

2. Show that the formula

L(θ)/L(θ0) = Eθ0
[ f (x,M ∩ W̃ ; θ)

f (x,M ∩ W̃ ; θ0)

∣∣∣X ∩W = x
]

follows from (3) by interpreting L(θ) as the normalizing
constant of f (m|x; θ) ∝ f (x,m; θ).

3. (practical exercise) Compute MLEs for a multiscale process
applied to the spruces data. Use the newtonraphson.mpp()
procedure in the package MppMLE.
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Solution: second order product density for Poisson

E
6=∑

u,v∈X
1[u ∈ A, v ∈ B ]

=
∞∑

n=0

e−µ(A∪B)

n!

∫

(A∪B)n

6=∑

u,v∈X
1[u ∈ A, v ∈ B ]

n∏

i=1

ρ(xi )dx1 . . . dxn

=
∞∑

n=2

e−µ(A∪B)

n!
2

(
n

2

)∫

(A∪B)n

∫

(A∪B)n
1[x1 ∈ A, x2 ∈ B ]

n∏

i=1

ρ(xi )dx1 . . . dxn

=
∞∑

n=2

e−µ(A∪B)

(n − 2)!
µ(A)µ(B)µ(A ∪ B)n−2

=µ(A)µ(B) =

∫

A×B
ρ(u)ρ(v)dudv
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Solution: invariance of g (and K ) under thinning

Since Xthin = {u ∈ X : R(u) ≤ p(u)},

E
6=∑

u,v∈Xthin

1[u ∈ A, v ∈ B ]

=E
6=∑

u,v∈X
1[R(u) ≤ p(u),R(v) ≤ p(v), u ∈ A, v ∈ B ]

=EE
[ 6=∑

u,v∈X
1[R(u) ≤ p(u),R(v) ≤ p(v), u ∈ A, v ∈ B ]

∣∣X
]

=E
6=∑

u,v∈X
p(u)p(v)1[u ∈ A, v ∈ B ]

=

∫

A

∫

B
p(u)p(v)ρ(2)(u, v)dudv
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